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I. INTRODUCTION 

In this set of lectures I shall talk about very simple things, 

namely the basic principles of transport theory. Much of whet I have 

to say is quite old, and in many of the problems my approach may 

appear to you old-fashioned. The reason is that such quantities as 

the electric conductivity of copper and the thsrmal conductivity of 

diamond stayed the same for many years, and some theoretical under- 

standing was reached some time ago. Although old, it is not necessarily 

wrong. Sometimes there is the attitude that just because a method 

has been used a long time it must be worse than a more elegant one 

discovered yesterday. I will show you some examples where new 

techniques give a wrong answer, and the old ones happen to be right. 

That is my excuse for looking at things in a rather simple and old- 

fashioned way. 

I will start looking at a few typical problems in the most ele- 

mentary wa~ just to see the basic physics clearl~ and then show how 

these very simple ideas can be used in cases where this approach is 

adeguate, and point out other problems in which more refinement and 

deeper insight is necessary. 

II. THE MOST NAIVE TRANSPORT PROBLEM 

The first transport problems properly handled i~ physics were 

quantities like viscosity or thermal conductivity of gases, studied 

by people like Boltzmann and Maxwell. We could start from these 

oldest examples but there is a simpler situation still, and that is 

the model of electrons in metals in which we imagine the electrons 

scattered by impurities and irregularities in the medium. The dif- 

ference between this and the gas is that we can imagine the impurities 

fixed and therefore are dealing with a one-body problem, while in the 

gas each collision involves two particles, both having statistica] 

properties. The electron model is no different in principle but 

makes the considerations simpler. 

Consider a situation in which an electron, described by its 

momentum ~, can be scattered by some centre to a new momentum t. 

We assume that there is a differential cross-section ~(~, ~/) for 



this process. The scattering probabilit~ which will determine the 

i t electron behsviour s w(~, ~ )= v LNi ~ , where the sum is 
i 

over the possible different kinds of scattering centres, each of 

density N i ; v is the electron velocity p/m. We assume elastic 

collisions and therefore the scattering probability will contain a 

delta function in the energy: 

w(2, ~') = w(2, ~,) ~(E - E') (1) 

We can follow Boltzmann in writing the Boltzmann equation which 

governs the rate of change of the numbers of electrons in a state. 

Then, if n(2, ~) is the density of electrons in momentum and coor- 

dinate space, we have: 

n(2,r) f 
V, ~n ~n I d3 2' : - -- )__r - _F.~"~ + J W(P, ) [n(p') - n(p)] (2) 

where the first term is the effect of the motion; the second the 

effect of the acceleration due to the force acting on the electron. 

The integral is the collision term, in which the first part repre- 

sents what is called the scattering-in from the state ~ into the 

state ~, and the other one is the scattering-out from the state 

into the state a t We have used the law of detailed balancing, 

which is connected with the symmetry of the underlying mechanical 

process against time reversal, so that 

w(2, a') = w(~', a) • (5) 

There are problems like conductivity in an external magnetic 

field, which do not leave this symmetry. This makes no substantial 

change in the results of the application of statistical mechanics 

except that one has to use more care in writing down the expressions. 

For simplicity I shall not treat such problems. 

One may wonder how it is that we get here an equation which 

describes irreversible processes. It is well known that this equation 

gives sensible answers, for example, for the electric conductivity 

which is antisymmetric under time reversal, because in the ordinary 

process of conduction the charge flows from the higher to the lower 

potential. If the time were reversed it should flow from the lower 

potential to the higher potential and the conductivity would have a 

negative sign. 



So, in going from the reversible equations of mechanics to this 

Boltzmann equation, we have already smuggled in the irreversible be- 

haviour in some place. This place is the stosszahlansatz of Beltzmann. 

His statement about the number of collisions is basically the 

following: I consider some target of cross-section ~b for the 

process under consideration: 

vdt ~ Pb 

' Oiiii iiiiiiiiiiiiiO 
c a ~ b  

Evidently the number of particles of type a which make the 

appropriate collision in a time dt is the number of particles con- 

tained in a cylinder of cross-section G~ab and length Vadt , where 

~a is the velocity of the particles. That is ~a ~ab Va dr. This 

is exact. The important statement is that the density of particles 

of type a, ~a' in that cylinder, is assumed the same as the density 

of particles of type a anywhere in the system, because the particles 

in that cylinder "do not yet know" that they are going to collide, 

and the only special thing about this cylinder is that it is leading 

to a collision. 

Now by making this statement we introduce a sense of time into 

the problem. If we consider the inverse reaction, the same cress- 

sectioo applies to the inverse collision as long as we deal with 

elastic collisions, by the law of detailed balancing, Therefore to 

describe the inverse collision we would have to assume that the den- 

sity of particles with momentum -Pb in the cylinder c b is the 

same as elsewhere. Now of course, if we consider collisions in the 

inverse case this is true, but for the outgoing particles in the direct 

case this is not true because the cylinder c b contains the particles 

that have just made a collision and their number is determined not by 

what happens in this second cylinder but by the incoming particles 

that have collided. 

Of course in statistical equilibrium this does not matter. But 

if we are not in equilibrium, if we have for example a current flowing 

in the direction Pa, then the density of "a" electrons is higher 

than that of b electrons. After the collision, they are scattered 

into the direction b, and the density of outgoing b electrons in 

the cylinder, ~b, is therefore greater than elsewhere in the gas. 



In accepting this stosszshlansstz we make an @ssumption which destroys 

reversibility. We are allowed to do this physically because any ex- 

perimental situation always arises by bringing the system at some time 

into some given state, and then allowing it to behave as it likes 

subsequently. We are concerned with an initial-valise problem. But 

we are incapable of conducting an experiment in which, given a con- 

dition at some time, we can observe what the system did in the past. 

The reason for this is another question, but what we see is that we 

need a preferred sense in time in practical physical situations. 

I mention this because in any theoretical treatment of transport 

problems, it is important to realize at what point the irreversibility 

has been incorporated. If it has not been incorporated, the treat- 

ment is wrong. A description of the situation which preserves the 

reversibility in time is bound to give the answer zero or infinity 

for any conductivity. If we do not see clearly where the irrever- 

sibility is introduced, we do not clearly understand what we are doing 

Let us return to our equation and consider the collision term: 

Id3~ w(~, ~' ) [n(~ t) - n(~)] 

I can do the integration in the second term, and the factor of 

n(~), which is of the dimension of an inverse time, can be called 

the ioverse of 8 "collision time", • , so the integral becomes: 

d3~ ' w(2, 2' )n(~' ) - ~ n(~) . (4) 

Now, there 8re situations in which one can simplify the first 

term also, and I shall start by looking into these situations, al- 

though they 8re quite exceptional in practice. 

Let us assume that we are dealing with free electrons so that, 
d 

for a given energy, W in (i) depends on ~ only through its direc- 

tion. Now let us assume that W is independent of the direction of 

i. In that ease we are able to integrate also the first part of 

the collision term, and we are left simply with 

! (~ _ n) <5) 

where ~ is the average of n over directions. This simplest case 

is applicable to 8 classical model of hard-sphere scattering, or in 

quantum mechanics to scattering centres small compared to the wave- 

length. Then the scattering cross-section is isotropic. 



(a) 

(b) 

Let us consider as an example two cases: 

There is no field and no gradient. 

becomes 

~n 1 (~ n) = ~ - . 

By averaging over all directions, 

Then the Boltzmsnn equation 

(6) 

y~ : o, (7) 

so that we can write (n- ~) =-~ (n- ~) (8) 

-t/~ 
which has the solution n - ~ = F(~) e (9) 

( ~'i stands for the direction in space) . 

In this trivial model any deviation from equilibrium dies 

out exponentially and the exponent is always the same for any 

angular distribution. Of course we are talking here about 

deviations in the angular distribution. If the energy distri- 

bution is wrong then the mechanism we are discussing will not 

put it right, because we are considering only elastic collisions. 

One talks about ~ as the "relaxation time". Already in 

this primitive model we have two relaxation times, one for 

angular deviations and another for deviations in the energy dis- 

tribution. In our model the latter is infinite. 

As 8 second case we shall consider an external electric field 

along the z-axis. The Boltzmann equation now reads: 

~n 1 (~ n) - e ~z ~n (i0) 
-- - ]Pz 

In this form it is still a complicated equation to discuss 

because it is non-linear, in the sense that the deviation from 

equilibrium will grow with the electric field, and it is here 

multiplied by the electric field, so that there is 8 quadratic 

term. In practice we are nearly always interested in fields 

weak enough to neglect terms higher than linear in the fields; 

in other words, we consider the region in which Ohm's law is }Zo 
valid. In this case we can replace ~-- by _ where n o is 

~P Z ~ ~ 
the distribution in the absence of the external ~ield, in sta- 

tistical equilibrium. Then: 

)n 1 (~- n) - e ~z ~n° 
Y~ = T ~Pz 

(ii) 

We have in fact to make this approximation if we want to describe 



a stationary state, because if we keep terms quadratic in g there 

will not, in fact, be any stationary states. The reason is that we 

then include the Joule heat, which will make the electrons hotter and 

hotter, and this excess of energy cannot in our model be removed, at 

least by the collisions, so that no steady state is possible. Of 

course, one can either include in the model some process that can 

remove this excess energy or take into account that the metal has 

surfaces that can conduct it away, but this would lead to a complicated 

discussion. 

In our approximation we can have a steady state, so that: ~ = O. 

n o will be a function of the energy only: n o = f(E) ~nd therefore 

•n 0 
~Pz 

v 2 ~f (12) 

Now our equation is easy to solve and we have: 

~z ~f n = f + e ~ v z ~-~ . (13) 

So we have solved our first transport problem. 

We can now immediately compute the current density: 

fe e2 * 

2 
where~e is the spatial electron density and the average of v z 

is taken over the surface of constant energy. This formuls applies 

both to classical Boltzmann statistics or Fermi statistics. In other 

words, it would apply both to semiconductors and to metals. In the 
~f 

case of a metal - ~ is nearly a delta function; it has a steep 
2 

maximum at the Fermi surface~and, therefore the average of v z is 

the average over the Fermi s~rface. 

It is not ~ priori evident whether our derivation is right for 

a Fermi gas, because we have not taken the Pauli principle into account 

The number of collisions from state 2" to ~ is proportional not 

only to the number of electrons in the initial state, but also to the 

number of vacancies in the final state I1 - n(p)] and similarly 

in the other term: but the quadratic terms cancel out in the elastic 

case, which we are considering here 



n(.~') [i - n(p)] - n(p) [I - n(]2') ] = n(f) - n(]!) 

III. ANGLE DEPENDENT SCATTERING; MANY COLLISION TIMES 

Let us see what happens if we take a slightly more realistic 

case, in which the scattering probability depends on the final 

direction. We assume we are in an isotropic medium. Then we can 

say that 

W(~, ~') = W(cos ~) ) (15) 

where @ is the angle between ~ and e. In other words, the 

collision probability depends only on the relative direction of the 

initial and final momenta. 

Again this will be true in s gas, but it is never exact in s 

metal because of the crystalline structure. However, the present 

approximation is somewhat more realistic than the previous model. 

The Boltzmann equation now becomes an integral equation. For- 

tunately we can exploit the isotropy to give us an immediate solution 

AS we are in sn isotropic medium, the energy can depend only on the 

magnitude of the momentum, so that the energy surface is s sphere, 

and the collision term in (2) can be written as 

const. Id.~k / W(cos ~ )  [ n ( ~ ' ) -  n(~)] (16) 

where d i~g is the element of solid angle, and ~J differs from 

only in direction. 

z We simplify this expression by using the spherical symmetry: 

= _ @ Expand n(p) in spherical harmonics 

n(p) = n~m Y~m(@~ ~) (17) 

Also, we can expand W(cos ~ ) in terms of Legendre polynomials 

w~ (cos @ ) ( i s )  W(oos @ ) = (2~+1) P~ 

(The factor (2~ +i) -i is put in for convenience). 



Using the composition theorem to express P~ as a sum of p r o -  

ducts of spherical harmonics in both directions, the integral in (16) 

is easily done, and the result for the original collision integral 

is then: 

const. ( w o - w~)n~m Ygm (19) 

From this it is immediate that, if only collisions are present 

dn~m i i 
d t  = - ~ njm where ~ = (w  o - w ~ ) .  (20)  

In particular, i/~o = 0 ; there is no change in n o because that 

represents the total number of electrons at the given energy. We are 

still able to maintain the concept of a collision time, but this now 

depends on the nature of the deviation from equilibrium which we 

consider. 

However, in the driving term of the Boltzmann equation, we have 

something proportional to e gz Vz In an isotropic medium v z is 

proportional to cos @, a first-order spherical harmonic. The rele- 

vant collision time for the disturbance caused by an external field 

is therefore ~i" This is sometimes called the transport collision 

time, and multiplied by the velocity it gives the transport mean free 

path. 

The transport collision rate is given by: 

]--- ~ ~W(cos (~)) (1 - c o s  @ ) d / ~  i (21) 

T h i s  r e s u l t  says t h a t  s m a l l - a n g l e  c o l l i s i o n s  c a r r y  l e s s  w e i g h t  be -  

cause t h e y  are  n o t  w e l l  a b l e  to  remove the  p r e f e r r e d  d i r e c t i o n  due 

to t he  a c c e l e r a t i o n  i n  t he  e x t e r n a l  f i e l d .  Fo r  s m a l l  a n g l e s ,  t he  

w e i g h t  i s  p r o p o r t i o n a l  to  ~ 2 .  T h i s  i s  a l s o  e v i d e n t ;  i f  we r e p r e -  

s e n t  the electron momentum by a point on a sphere of constant momentum, 

small-angle collision will displace the point on the surface in a 

kind of Brownian motion, so that the displacement is proportional to 

the square root of the number of collisions. The number of collisions 

required to get us away from the initial direction is therefore pro- 

portional to the inverse square of the angle in each collis~on. 

This fact has been responsible for building up more confidence 

in the concept of a collision time than was justified. In particular 

we can apply the same kind of considerations to the thermal 
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conductivity. In this case we have a different driving force, but 

its directional dependence is also proportional to a velocity com- 

ponent. It is therefore again an 2= 1 deviation from equilibrium. 

If we compare the electric and thermal conductivities, we see they 

depend on the same collision time ~l 

Therefore all results are the same in that comparison, as if we 

were dealing with hard sphere collisions and only had one collision 

time. In particular we get the Wiedemann-Franz law, which says that, 

at least at high temperatures where we can neglect the quantum nature 

of the lattice vibrations, the ratio of electric- to thezmal con- 

ductivity is the same for all metals and varies inversely as the 

temperature. 

IV. A STILL MORE GENERAL TP~NSPORT COLLISION TIME 

We have not completely justified its empirical success, because 

metals are really not isotropic. IIowever we can go 8 little further; 

when we ]ook for a stationary distribution in an electric field and 

in a temperature gradient we have: 

0 = ~ =~n Id312 tW(cos@) ~(~') - n(~)] ~(E-E ~) - e __-~£v ~n° 

)n ~T - Z '~-T ~-~ ( 2 2 )  
m 

w h e r e  t h e  f i r s t  t e r m  Js t h e  c o l l i s i o n  t e r m  a n d  t h e  l a s t  t w o  can  be  

w r i t t e n  t o g e t h e r  as  

z.~ Is(2)] (23) 

As long as we consider elastic collisions, where the equation 

contains a given energy at a time, we have only to solve this inte- 

gral equation on the energy surface with the velocity on the right- 

hand side, which is now a complicated function on the surface. 

The solution of this one equation gives us both electric and 

thermal conductivit~ so, it is no wonder that we arrive at the same 

ratio as when we dealt with hard-sphere collisions. We must not use 

this agreement as evidence that we are dealing with the case of a 

clearly defined collision time. This makes our work easy Jn one 

sense because we can understand the simple empirical law of Wiedemann 

and Franz, but it makes it harder in the sense that it is not possible 
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to use this empirical law to draw any conclusions about the collision 

mechanism. 

However, this situation is not general; if we are interested in 

the Hall effect or in magneto-resistance, we have a magnetic field 

present as well as an electric field. We are looking for an effect 

that is proportional to the product of both the electric and magnetic 

fields. We therefore have to consider 8 second-order term, which is 

no longer of the form of a single spherical harmonic. The details of 

the shape of the energy surface and of the collision mechanisms come 

in. 

Indeed if, in the classical situation which we are now discuss- 

ing, there was a single collision time, there could be no magneto- 

resistance. The Hall field which develops makes the equipotential 

surfaces tilted: 
@_i 

///// 
The force required to cancel o u t  the transverse force on the electrons 

is the same for each electron because the collision time is the same 

for all. This just cancels the effect of the magnetic force in the 

longitudinal direction and there is no magnetoresistance. 

This was found for the first time by Sommerfeld, to his great 

surprise° He found s small correction, because all the electrons do 

not all have exactly the same energy. The Fermi distribution falls 

off over an energy interval of the order of kT, and within that fall- 

off range, the electrons that contribute to the conductivity have their 

energy spread out by an amount kT. If the collision time depends 

on the energy, this gives a small variation and there will be a small 

magnetoresistance.since the collision times are no longer equal. 

I recall a personal experience. In the early days of the theory 

of metals I found some results about the variation of magnetoresis- 

tance with magnetic field, without determining the magnitude, and I 

agreed to talk about this at a conference. To my distress I found 

on the eve of the conference that in my model (which used a single 

collision time) the magnitude of the effect was zero. 

We emphasize the fact that collision time, while intuitively a 

very useful concept, has to be handled with care. In many situations 

the assumption of a single collision time can lead us astray. 
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V. HOW VALID IS THE BOLTZMANN EQUATION? 

So far we have looked at theae problems in a very simple way. 

The first thing we should do is to ask in what circumstances this 

simple picture is sdequate, in classical physics. 

The electron travels in straight lines between collisions, 

the time interval between them being on the average s collision time. 

The duration of the collision Tc classically depends just on 

the size of the object with which the electron collides. Our momentum 

distribution is valid between collisions rather than inside the 

scattering centre. We do not try to describe whet is going on in- 

side, and we only consider the asymptotic initial and final states at 

each collision. There are two reasons why we should assume that 

~c<<~ 
The first reason is that if they were comparable, the electron 

might find itself at the same time under the influence of two scatter- 

ing centres and our calculations would not be valid. 

Secondly, in evaluating the average of some physical quantity we 

neglect the contribution from inside the scattering centre. While 

the electron Js inside the scattering centre, its properties differ 

from what they are outside. So if we are desling with a situation 

where the fraction of time spent inside the scattering centres is 

appreciable, then our description is wrong. 

In practice Tc is comparable with T only in very dirty 

metals, or in liquids, where the "lattice" is imperfect everywhere. 

In such cases transport theory becomes very much harder. 

Consider now the changes caused by the quantum theory, apart from 

the Pauli principle, which we have already mentioned. In this new 

situation we have to describe the scattering by each centre by 

quantum mechanics. We take the same equations as before, but for 

the scattering probability we take the solution from the SchrSdinger 

equation 



13 

incoming wave scattering centre 

II I " I ,. @ ~scattered wave 

The normal formula for the scattering amplitude refers to the 

asymptotic form. This is valid at a distance much greater than the 

wavelength ~ ~ so in using it we assume that the distance between 

scattering eentres, r, is very much larger than ~ . If a second 

scatterer is placed at a distance r comparable to ~ then we 

have new diffraction phenomena, or as one sometimes says "off- 

energy-shell scattering". 

This can be brought out in another way, if we derive the scatter 

ing probability by time-dependent perturbation theory. We write: 

r )  = ~ ak Uk (2~-) 

where the u k may be plane waves. To the leading order: 

1-cos,,, 2 iw  ,l 2 a 12 ( a )  I ~ 1 2  -_ iwk~,l 2 a 2 la 'l = k, I 
(25) 

whe re 
E k - E k" 

t 2 

D(~ ) is a sharp peak, of a height of the order ~2t2 and a width 

of the order ~/t . The area is therefore proportional to t. if 

the other factors can be treated as constant over an energy range of 

4/t , we obtain an expression of the form 

const, t la~,l 21w~l  2 ~ ( E -  { )  

as in Fermi's "golden rule". 

This rule is implied in our use of scattering theory, and it is 

seen to depend on the variation of the factors in (25) within an 



14 

energy range of ~/t being small. But t must be smaller than the 

collision time, to justify the consideration of a single collision. 

So ~/~ must be small compared to the relevant energy. 

Now in metals the electron distribution function drops off over 

an energy range of kT, and since this function appears in one of 

the factors in (25) our derivation seems to require that 

~/~ << kT (26) 

In fact this inequality is frequently violated in metals. 

Vl. THE SITUATION IS BETTER TI~N IT SEEMS 

Fortunately, while our derivation requires the condition (26), 

the result is valid subject only to the condition 

~/~ << E F (27)  

where E F is the Fermi energy. In metals, (27) is much weaker than 

(26), and is usually satisfied. In semiconductors we cannot improve 

on (26). 

The argument for replacing (26) is quite subtle. We shall use 

for this purpose the fluctuation-dissipation theorem, which was first 

applied to conductivity by Kubo (1956, 1958), obtaining an expression 

for the conductivity in closed form, though involving quantities 

which are not easy to evaluate. 

I shall give a derivation of the Kubo formula for the case of 

impurity scattering in which we may, as before, consider one electron 

at a time, and work in terms of single-particle dynamics. I am he:re 

following a paper by Greenwood (1958). 

In terms of the density matrix ]J , 

f=fo +A 
where fo is that of statistical equilibrium, and fl 

first order in the applied electric field ~ , 

is 

Jz = 

The equation of motion for 

(28) 

small of 

the current density 

Tr (ev z f l  ) . (29) 

i s  
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Here H is the Hamiltonian including the effect of the scattering 

centres, and V is the potential of the external electric field. 

have neglected ~l in the last term since its contribution would I 

be of second order. 

To fix the solution of the time-dependent equation (50) we 

assume that the field has grown gradually since t = -~ by 8 

factor e £t with infinitesimal E , and that J~ also was zero 

at -m . This is where we violate time-reversal symmetry. 

Now ~]l also has a time dependence as e ~t. (30) can now be 

written as 

We use the representation in which H is diagonal and label its 

eigenstates by ~ , ~ ..... 

e~z <~Ivz1~>(f~ _ f~ ) 
E~ - E~ (32) 

On the right-hand side we have eliminated the operator z, which 

appears in V =-e ~zZ, and which does not go well with cyclic 

boundary conditions, in favour of the velocity by the equation 

= v z in the Heisenberg form; f~ is the Fermi function st energy 

E~ . 

The solution of (32) is 

<~IVzl~> f~- % 
<~I lll~> = i{e E 

z E -  E~ + i{a E~ - E@ 

The current density per electron is now, from (29) 

(35) 

• 

Jz = i { e2  ~z , l(°(~Vz~ ~> ~2 f ~ -  f~ (34) 

Here every factor is symmetric in o( and ~ , except the first de- 

nominator, which would change sign on interchanging ~ with 

except for the smell term i~E . We therefore replace the expression 
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by its average, with ~ , ~ interchanged, to give 

. , I  ~ %~- + _ 
(35) 

We are interested in a macroscopic system in which the energy 

spectrum is practically continuous. Summing, for example over all 

states ~ with energies in a small interval dE~ , and then inte- 

grating, we pass above the pole in one term in the last bracket and 

below the pole of the other, so the difference reduces just to the 

residue at the pole 

£ 

j = gz i< iVzl0>i 2 

This is essentially the Kubo formula for the case in hand, in 

the representation used. 

Note that (36) makes sense only in the macroscopic limit, with 

a continuous spectrum. Otherwise, if there are no pairs of states 

of exactly the same energy, coupled by matrix elements of v , (36) 

is zero, and if there are, they give terms in ~ (0) , which is 

infinite. For 8 large but finite system we should not take E in 

(35) to go to zero, but remain larger than the spacing between levels, 

so that the ~-function in (36) is replaced by a finite peak covering 

many levels. 

For our present purpose it is important that (36) is of the form 

j = ~ F(~) ( -  ~--~) (57) 

where F(E) is some function of the energy and f the Fermi function 

F(E) is then a kind of mobility, which will vary slowly with energy. 
~f 

The temperature enters only through (- ~-~), which is a steep maxi- 

mum near E F of unit area, so that (37) is practically 

~F(EF) (38) 

as long as kT is small compared to the energy range over which b 
vanishes. If F(E) behaves like a power of E, (38) remains valid 

up to temperatures of the order of EF/k. At these temperatures the 

expansion we have used is valid subject only to (27), and since 
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(38) no longer contains the temperature, the result is independent 

of T, and does net require (26). 

This argument was given long ago by Landau, but never published 

by him. His starting-point was thst it must be possible to express 

the conductivity in the form (37), and all we have done is to show 

explicitly that this is the case. 

VII. THERE ARE STILL RESERVATIONS 

Note that we rely essentially on the smoothness of F(E). If 

F(E) contained terms with rapid oscillations, the argument would 

fail, and the limit of our approximation would go towards (26). In 

metals there is no reason why there should be such oscillations, but 

it is dangerous in physics to assume the absence of a phenomenon 

because we knew of no reason to expect it. 

As an example of the situabion that might arise, we may think 

of metals in a magnetic field. Here the quantization of the electron 

orbits results in a discrete spectrum with a spacing of 2,@B (~ = 

Bohr magneton , B magnetic intensity) and if this is not small com- 

pared to kT, one gets oscillations in the susceptibility (de Haas- 

van Alphen effect). Here the temperature dependence is dominated by 

a factor of the form 

-const kT/}4 B 
e (39) 

~B which vanishes when --~ -~ 0 but cannot be expanded in a Taylor 

series in that quantity. Unfortunately this type of behaviour is 

not uncommon in ststistical mechanics, and therefore looking for 

corrections involving higher powers of the small quantity under con- 

siderstion is not always safe. 

Many authors, including my student vsn Wieringen (1954), have 

looked at the next term in perturbation theory and its effect on the 

Boltzmann equation, ~nd have found corrections of the relative magni- 

tude ~/~E F , not /~ kT . This is comforting, but does not rule 

out exponential corrections, similar to (39). These are just what 

one might expect in cases in which a rapid oscillatory behaviour 

of F(E) invalidates Landau's argument, based on the form (37). 

There is another, much more trivial sense in which perturbation 

theory may be inadequate. Our use of perturbation theory implies 
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the use of first-order Born appreximation for the scattering from a 

single centre. For a strong short-range force, for example a small 

hard sphere, this is invalid, although the scattering cross-section 

may be quite small. In that case it is easy to determine the exact 

scattering cross-section of a single centre from the appropriate 

Schr~dinger equation and use it in Boltzmann's equation. It is on 

this basis that (27) (or in some cases perhaps (26)) represents the 

true limit of validity. 

VIII. PAULI'S REMARK AND 0FF-DIAGONAL ELEMENTS 

There is one further aspect of the usual procedure which re- 

quires justification. In deriving the collision term of the Boltz- 

mann equstion, we ask, at any time, for the rate of change, over s 

small time interval, of the probability of the electron being in a 

state p. This is given by ~ap~ 2 , where ap is an expansion of 

the electron wave function in terms of eigenfunctions of the Hamil- 

tonian in the perfect lattice. 

In deriving Fermi's golden rule, one assumes that the system is 

initially in a single such eigenstate, but ss a result of the inter- 

action there will be a complicated superposition 

~ =  E a p  Up (40) 

of the eigenstates u . 
P 2 

The probability Is_| at time t + dt will contain not only 

squares of the form la~ ~ at time t but also products of the form 

ap. ap. This was first pointed out by Pauli (1928), who suggested 

averaging over the phases of the eigenstates at each step. 

In another language, we can describe the ensemble of electrons 

in terms of a density matrix ~p IPl P~>, of which the diagonal ele- 

ments give the probabilities or occupation numbers. Pauli's method 

involves following the time evolution of f over a small time inter- 

val, assuming it diagonal at t, and omitting the off-diagonal ele- 

ments that may have developed at t + dt. 

The merit of Pauli's paper lies in bringing out clearly the need 

for a step of this kind in the usual procedure. Since then there have 

been many papers to show how to avoid, or justify, this omission of 

off-diagonal terms. 
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For a more rigoro~s treatment, we might try to start from 

the Kubo formula, e.g. (56), and exploit the fact that the collision 
-1 

rate ~ is Small. Unfortunately, the direct use of perturbation 

theory on this expression is useless. The point is that we are deal- 

ing with an expression for the conductivity, which, in the absence 

of collisions, would be infinite. An expansion from infinity as 

starting-point is not sensible. 

I knew of the existence of a formula of the type of (36) many 

years ago, but regarded it as academic because I could not evaluate 

it even for the problems whichI knew were soluble by the Boltzmann 

method. This did not do justice to the resul~ because it can easily 

be extended to oscillating fields. In that case nothing singular 

happens in the absence of collisions, and ~f the frequency o~ of 

the field satisfies the condition 

a direct application of perturbation theory to the Kubo formula 

works well. 

The static case is, in this sense, the most difficult. One 

attempt to give a valid derivation is found in the paper by Greenwood 

(1958) which has already been mentioned. 

For this purpose he writes the density matrix in terms of eigen- 

states of the Hami]tonian H o containing only the kinetic energy 

of the electrons and the potential of the perfect lattice, but not 

that of the scattering centres. 

By perturbation theory one then expresses the rate of change of 

the diagonal elements of ~ in terms of the off-diagonal ones. In 

the equation for the rate of change of the off-diagonal elements 

there occur both diagonal, and other off-diagonal elements. We assume 

the diagonal ones to be dominant, and can then eliminate the off- 

diagonal ones, to obtain an equation of motion containing only dia- 

gonal elements of ~ This turns out to be the usual Boltzmann 

equation. It is now possible to examine approximately the error 

caused by omitting off-diagonal terms in the second equation, by 

going one step further, and Greenwood finds that the error is small 

provided (27) is satisfied. 

In this argument, which is suggestive, rather than rigorous, it 

is important to use the spatial uniformity of the problem. This is 

connected with the stochastic uniformity of the scattering potential. 

If we consider the stochastic average of the potential W(~) of the 
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scattering centres, it is just a constant which can be absorbed in 

the lattice potential. A quadratic quantity like <W(~l) W(!2) ~ 

t~ken as s stochastic average, will depend only on ~l - !2 " This 

results in a suppression of off-diagonal elements in ~ . If the 

potential were exactly uniform, ~ would be exactly diagonal in 

With s potential which is stochastically uniform, the diagonal ele- 

ments dominate. 

IX. SUMMARY OF LIMITS OF VALIDITY 

So far I have restricted myself to systems in which we were 

essentially concerned with a one-body statistical problem. One of the 

conclusions reached was that the simple treatment by the Boltzmann 

equation was limited to systems with not too great a collision fre- 

quency. It is clear that there must be such a limitation, because, 

if the particles spend an appreciable fraction of their time under the 

influence of a scattering centre, the correct~uilibrium equation of 

state is given by a Boltzmann factor exp~(T + V)~ (or the corres- 

ponding Fermi function) where T is the kinetic energy, and V the 

potential of the scatterers. To describe the latter, we must know the 

spatial correlations of the particles with the scatterers, for which 

there is no room in Boltzmann's equation. If we cannot describe 

statistical equilibrium, we clearly cannot expect to deal satisfac- 

torily with transport problems. 

Another way of looking at the same difficulty is that, if 

~/~ > EF, the interaction with the irregularities is comparable 

w&th the main electron Hamiltonian° In other words, it is no longer 

possible to divide the IIamiltonian into an "unperturbed" part, which 

has simple eigenstates and a "perturbation" which is small. The same 

forces which dominate the dynamics, are responsible for the approach 

to equilibrium or for the limited response to an external field. 

This is typically the situation in a liquid or in an amorphous 

substance, where it is no longer possible to set up an exact theoretical 

description, although one can obtain qualitative results in many 

practical cases. 

X. EXTENSION TO MANY-BODY PROBLEM 

Let us now remove the limitation to one-body problems, and con- 

sider binary collisions. To fix the ideas consider collisions between 
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free fermions. Let the momenta of the incident particles be PI' P2 
l • 

and the final states Pl ' P2 " Then if Vl2 is the relative velocity 

of approach and, for elastic collisions, also the velocity of separa- 

tion, and w(Pl' P2; Pl , P~ ) again the differential collision cross- 

section, the number of collisions specified is 

w(pp ; " ~ )n(Pl)n(P2)[i- n(Pl)]~l n(p')] (42) v12 1 2 Pl P2 

where the last factors again account for the number of particles in 

the initial states, and the number of vacancies in the final states. 

The difference between the rates for the specified collision and its 

inverse, which determines the rate of change in the occupation of one 

of the states in question, is 

Vl2 W(~l 22; al a2 > n(a~) n(~2> [1 - n(a'i>][1 _ n(~ > 

If we were dealing with bosons, 1 - n would in each case be replaced 

hyl +n. 

XI. NEGLECT OF CORRELATIONS 

(43) should strictly be read as giving the probability of an in- 

dividual transition, minus that of the inverse transition with the 

n(p) being 0 or 1. In finding the mean rates of transition, we should 

average the expression, thus forming an average of terms like 

< n (~l) n(~a)> (44) 

and of higher powers. This involves the two and three-particle dis- 

tributJons, and if we look for an equation for their change with 

time, we require four and five particle distribution. This would lead 

us to an infinite hierarchy of linked equations. 

Fortunately, this is unnecessary in the dilute system, because we 

can then assume, with Boltzmann, that the many-body distribution 

functions factorize, e.g. 

<n(~l) n(~2) > = <n(~l) > < n(~2) > (45) 

We have already discussed the "stosszahlansatz" which implies 

(45) before any collision. We noted also that after each collision 
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the particles will be correlated. If a given pair of particles which 

had just collided, were likely to collide again, our assumption (45) 

would therefore be unjustified. However, in a dilute system the mean 

free path is much longer than the average distance between the par- 

ticles. Before the two given particles are likely to collide again, 

they will have many opportunities of colliding with others, and this 

will wipe out the correlation. Evidently this would not apply in a 

dense system, in particular in which a pair of neighbouring molecules 

may make a large number of collisions with each other interspersed 

only each time by one collision with another. 

We conclude bhat, for the dilute system, we may treat each of 

the n(p) in (43) a s  an average. 

XZI. CONSERVATION LAWS 

Then (43) should vanish in equilibrium. Indeed, the bracket can 

be expressed, in an obvious shorthand notation, as 

s J 

/ / I l-nIT l-n2~ l-nl l-n2 1 ( 4 6 )  

nln2nln2 nl n 2 n I n 2 

For the Fermi distribution 

1 - n  ( E - E F ) / k T  
= e ( 4 7 )  

n 

so that the bracket in (46) is 

J J -2EF/k  % } (48) 
e e - e 

But for elastic collisions the cross-section w vanishes unless 

l t 

E 1 + E 2 = E 1 + E 2 (49) 

In general , there are other distributions which are not affected by 

the collisions. In a gas the collisions conserve momeotum, 

d S 

Pl + £2 = Pl + P2 (50) 

and therefore (44) will vanish for a distribution for which there is 

an exponential function of momentum multiplying the right-hand side 
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of (47). This is 8 Fermi gas with an arbitrary drift velocity. 

The most general distribution which will be stationary in the 

presence of collisions is therefore of the form 

n(]~) = e + 1 (51) 

where T and E F are arbitrary quantities and ~ an arbitrary 

vector. These parameters reflect the conservation of energy, par- 

ticle number, and momentum. In general it is important to know what 

conservation laws hold, in order to understand the effect of the col- 

lisions. 

XI!I. LIMIT ON COLLISION RATE 

The next question is how to derive the collision cross-section 

w. Here we can be brief, because the considerations are similar to 

those in the one-body problem. It may be convenient to express the 

collision cross-section in terms of first-order Born approximstion 

when this is justified, but when it is not~ as for strong short-range 

interactions, one can use the exact solution of the two-body collision 

problem instead. 

Assuming this is done when necessary, the only remaining condition 

for the validity of the Boltzmann equation is 8 limit on the collision 

rate I/~ . 

A system will certainly be dense, and a treatment by Boltzmann's 

equation invalid, if ~/~, exceeds E F. There may, however, be some 

difficulty already when qa/~ exceeds kT, since the previous reason- 

ing which allowed us to replace (26) by (27), depended stroDgly on the 

absence of energy exchange. (In metals at temperatures above the 

Debye temperature ~ the energy exchange in eleotron-phonon col- 

lisions is at most k~ , i.e., smaller than kT. It is likely that 

such co]lisions can be regarded as changing the electron energy by 8 

negligible amount, so that the Landau argument remains valid.) 

In addition, we have seen that there are several different 

definitions of collision time, according to the purpose. One might 

guess that small-angle collisions are not very important in creating 

complications, so that the "transport collision time" ~i , gives 

the right measure. 

In special, circumstances this might be different. For example, 

in 8 magnetic field the electron motion in the plane perpendicular 
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to the field is quantized because the motion consists of closed orbits 

A deflection by quite a small angle might be sufficient to throw the 

electron from one such orbit to a neighbouring one, and hence it 

might be conjectured that in the magnetoresistance problem ~/~ , 

not ~/ ~l' measures the strength of the coupling. 

XIV. OMISSION OF OFF-DIAGO~[AL TERMS. RIGOROUS DERIVATIONS 

We again meet the problem of how to justify an equation in terms 

of probabilities, i.e. not involving phase relations, or off-diagonal 

elements of the density matrix. 

There have been many approaches to this problem, the best known 

being those by Van Hove (1955, 1956) and Prigogine (]962) (see also 

the review by Chester, 1963). 

It is not possible to give an account of such methods within the 

scope of these lectures, but I shall give some brief indication of 

the ideas of Van Hove. 

Van Hove starts by considering the time evolution operator 

-iHt/~ (52) 
e 

where H contains the Hamiltonian of independent particles end also 

their interaction, but not any external field. In order to keep track 

of the orders of magnitude it is convenient to define the interactions 

with a parameter % : 

H = ~o + ~V (53) 

Perturbation theory then amounts to an expansion in powers of ~ . 

If a direct expansion is terminated after a few powers of ~ , 

it will be a reasonable approximation only for very short times. 

To study the approach to equilibrium, one has to go at least to times 

of the order of the collision time, which is proportional to ~-2. 

(We again ignore the possibility that the individual interaction might 

be too strong to be described in first-order Born approximation.) 

This suggests that in evaluating (53) one should treat ~ as 

small, and t as large, the quantity ~2t being finite. One in- 

cludes all powers of ~2t, but neglects Amt n with n < 2m 

(terms with n > 2m do not occur). 

The collection of the relevant terms is assisted by the "diagonal 

singularity" property of all physically interesting operators. By 
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this one means that the off-diagonal elements are, in the limit of 

an infinite sysbem, negligible compared to the diagonal ones. This 

is reminiscent of the result used by Greenwood in the scattering from 

random centres, where it was a consequence of the stochastic uniformity 

of the system. 

Evidently the system considered by Van Hove must be statistically 

uniform, otherwise it would be difficult to go to the limit of in- 

finite size. This accounts for the diagonality in momentum, or wave 

vector. 

I am not clear whether Van IIove's argument is adequately repre- 

sented by this remark. In a Bloch problem electric states are des- 

cribed by wave vector and band label. Should we expect matrix ele- 

ments to be small if they are diagonal in wave vector but non-diagonal 

in the band label? In many cases such inter-band terms belong to 

large energy differences and are probably small on that account. But 

there are cases of degenerate bands, in which two states in different 

bands with the same wave vector can have nearly the same energy. 

Mr. G. Kirczenow has convinced me that the diagonality may not 

be confined to the cases resulting from uniformity and I must leave 

this question open. 

Using these concepts, Van Hove can show that the sum of the rele- 

vant terms leads to a quantity whose time-dependence is given by the 

Boltzmann equation. HOwever, since % has been treated as small, 

this is, of course, still dominated by the limitation that the col- 

lisions are not too frequent, as we have discussed before. 



26 

XV. ILLUSTRATIONS. LATTICE THERMAL CONDUCTIVITY 

I shall now turn to specific applications. So far we have dis- 

cussed mainly general principles. I want to look at particular ex- 

amples both to clarify the general methods by illustration, and also 

to make a little propaganda for the Boltzmann equation. Of course 

this is not universally applicable, and we know it does not work for 

dense systems. But in its domain of applicability it has advantages 

compared to more sophisticated methods, as we shall see. 

We have already discussed s particularly simple example, the 

electric conductivity, in the csse of scattering by imperfections or 

other fixed scattering centres. For not too great a density of 

scatterers this can be treated by the Boltzmann equation, and I then 

pointed out that one has to take care with the concept of a collision 

time. The uncritical use of a collision time or mean free path, is, 

in fact, less sophisticated than the Boltzmann equation. 

Let us now consider an example of mutual collisions, and I shall 

choose for this the thermal conductivity of non-metallic crystals. 

I have some affection for this problem, on which I wrote my Ph.D. 

thesis in 1929 (Peierls, 1929, 1955), and even after this long time 

there remain points worth further discussion. 

This problem has an interesting history, because a great many 

plausible attempts were, in fact, incorrect. Of these I shall mention 

that of Debye. He realized that the heat was carried by lattice waves 

(today we talk of "phonons") and that their scattering, without which 

the conductivity would be infinite, was due to the forces not being 

exactly harmonic. To estimate this scattering he used an elegant and 

simple idea, typical of Debye's approach to physics. 

The main effect of the anharmonicity is to make the elastic con- 

stants, and hence the sound velocity, density dependent. The presence 

of lattice vibrations causes fluctuations in the density, and hence 

of the wave propagation, and this results in scattering, just as the 

fluctuations of the refractive index for light cause light scattering. 

Debye estimated in this way the thermal conductivity by analogy with 

the case of light and found that (at least in the classical region 

T > .~ebye) the conductivity K at temperature T was proportional 

to T -1, in apparent agreement with experiment. The empirical situa- 

tion was not as clear as one might wish because at that time the 

only relevant experiments were those of Eucken in about 1908, measuring 
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for a few solids at room temperature and in liquid air. Even 

today the high-temperature behaviour of K is not known very ac- 

curately. 

In spite of its appealing simplicity, Debye's approach is incor- 

rect. The reason is that it treats the density fluctuations as 

static. This is a justified approximation for light, because the 

fluctuations, which are due to the thermal vibration of the lattice, 

move with the velocity of sound, which is very slow compared to light. 

But this approximation is not good for the scattering of the lattice 

waves themselves. As a result, Debye's argument would predict, for 

example, a finite thermal conductivity for an anharmonic elastic 

continuum, whereas, as we shall see, its conductivity would be in- 

finite. 

Pauli realized that a more detailed theory was needed, and did 

some preliminary calculations on which he reported at a conference. 

The published abstract of this talk is, I believe, Pauli's only 

wrong published result. However, he evidently was not satisfied and 

asked me to study the problem further. 

XVI. CONTENT OF BOLTZMANN EQUATION 

In a crystal, the potential energy U is a function of the atomic 

displacements u, and has the form 

U = const. + ~u 2 + ~u 3 + .... (54) 

This is symbolic, since there are many atoms, and each displacement 

has three components. There is no linear term, since u = 0 repre- 

sents the equilibrium, by definition. The usual theory of harmonic 

lattice vibrations is obtained by including only the quadratic term, 

and the cubic term can be treated as a perturbation and will then 

cause transitions. Since u is a linear combination of phonon ampli- 

tudes, each of which has matrix elements increasing or decreasing 

a phonon number by l, u 3 contains terms in which two phonons are 

destroyed and one created, or vice versa, 

~i and ~2 ( ) ~3 (55) 

There are also matrix elements corresponding to the creation or des- 

truction of three phonons, but such a transition could never conserve 
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energy. 

The Boltzmann equation contains only energy-conserving transi- 

tions for which (since the phonon energy is ~w) 

° J l  + ~2 = ~ 3  (56) 

In addition, there is wave vector conservation, which is due to the 

translation symmetry of the problem. In a continuous medium, invariant 

under infinitesimal translations, the sum of all wave vectors would be 

conserved like the sum of the momenta in the collision of free par- 

ticles. A lattice is invarisnt only under translations by a multiple 

of the basic lattice vectors, and therefore the conservation law is 

~l  + ~2 = ~3 + ~ (57) 

where K is any reciprocal lattice vector. 

If ~ ~ O, we speak of an Umklapp process, a rather ugly 

German term which I used for this, and which has become accepted. To 

illustrate it, consider a linear chain of spacing a, where K is 
+ 

zero or - 2~/a. Two waves travelling to the right as shown, k I and 

k 2 

k 3 

' I ' i ~ ' 
- ¢ f / a  0 k 1 k 2 ~ / a  

may be such that k I + k 2 > ~/8 

and therefore lies outside the defining interval, so that the result 

2~ a wave travelling of the interaction would be k 3 = k I + k 2 --~-, 

to the left. We can think of an Umklapp process as an ordinary in- 

teraction of lattice waves together with a Bragg scattering. 

The collision term in the Boltzmann equation will contain a 

factor 

_ N IN2 (N3+ I ) }  (58) 

where N I ~ N(k I) is the number of phonons of wave vector kl, etc. 

The first term comes from the transition from right to left in (55), 

the second from the inverse. 

Near equilibrium we can write 

NO ( ~k )  (59 )  
N ( k )  = N°(~k ) + g ( ~ )  ~O~ ' ' 
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where N ° is the Planck distribution and the factor ~N° has been 

included in the definition for convenience. Inserting in (58) and 

keeping only linear terms in g, we find, apart from factors, 

(N1 + 1 ) ( N 2  + 1 ) N s ( g 3  - g l  - g2 ) (6o) 

This vanishes, and therefore the phonon distribution is stationary, 

if g(k) oC tO(k), since for all allowed transitions (60) then 

vanishes by (56). This arises from energy conservation and means 

that a change in the phonon temperature will not be removed by the 

collisions. 

XVII. EXPONENTIAL BEHAVIOUR 

If there were no Umklapp processes, i.e. if K were always 

zero in (57), then there would be another stationary distribution if 

g(k) 0C ~ . This would represent a phonon drift, which would evidently 

carry s heat transport, without the need for a temperature gradient, 

hence the thermal conductivity would still be infinite. This would 

be the position in a continuous medium. 

In a real crystal, Umklapp processes will destroy such a drift, 

but they are rare at low temperatures since they require the presence 

of at least one short-wave phonon, and their number decreases expo- 

nentially. We thus expect at low temperatures an increase in the 

thermal conductivity of the form 

~,~ e ~ ~/T (61) 

where ~ is the Debye temperature, and ~ s numerical factQr less 

than unity. 

This result shows that a discussion in terms of collision times, 

or phonon lifetimes,can be very misleading. The natural way of de- 

fining a phonon lifetime would be to assume one phonon added to the 

equilibrium distribution, and to watch it decay. In that case no 

problem of a drift arises, and the lifetime will not grow exponen- 

tially at low temperatures. 

Although the rise indicated by (61) was predicted in 1929, it 

was found only in 1951 by Berman (1951). There were two reasons why 

it was hard to find. Firstly, we expected it to appear at temperatures 

somewhat lower than ~ . In fact, Debye's definition of ~ is such 
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that the completely classical situation is reached immediately above 

, but the extreme quantum limit is reached only at temperatures 

~0 @ or so, as one can see from the specific heat curve. of 

To show the effect, one has therefore to go to very low tempera- 

tures, which means using very pure crystals, since otherwise impurities 

could mask the phonon interaction. 

The second reason is embarrassing for the theoreticians. It was 

not immediately realized that to be pure for the present purpose a 

crystal must also be isotopically pure. Most crystals contain a 

random mixture Of isotopes, whose different masses affect the kine- 

matics of lattice waves, and lead to scattering. This was pointed 

out by Pomeranchuk (1943) but in wartime conditions his paper was at 

first overlooked. In his experiments, Berman noticed that only some 

materials showed the exponential rise, and these were the ones con- 

taining only one dominant isotope for each constituent. 

The same need for Umklapp processes arises in the electric con- 

ductivity of pure metals. In his theory, Bloch derived the well- 

known T 5 law for the ~esistance by assuming the phonons always to 

remain in equilibrium. This is justified if the relaxation of the 

phonon distribution is faster than that of the electrons, which is 

true at high temperatures. Fer equilibrium it is, however, essential 

that the wave vector conservation be broken by Umklapp processes in 

electron-phonon, or phonon-phenon interactions (or by impurity scat- 

tering). In many metals it seems certain that ultimately Umklapp 

processes will become rare and there should be a law of the type of 

(61), though with a smaller ~ . 

This behaviour was expected, in particular for the alkalis, 

since 1930, I was interested to hear here from Professor Gitterman 

that there exist recent experiments, which I had overlooked, which 

show this effect in the alkalis. After all nature seems to behave 

as it ought to. 

XVIII. THE USE OF MODERN METHODS 

I have set out the phonon conductivity problem in such detail 

because it is a good example of the logical (if not always mathe- 

matical) simplicity of the Boltzmann equation. 

A more modern approach, using the techniques of many-body theory, 

was tried by J. Ranninger (1965). He found a solution by which the 

thermal conductivity of the lattice went to infinity at T = O, which 
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is satisfactory. However it did not behave exponentially like (61) 

but only as a power of T. Indeed, it would have given a finite con- 

ductivity even without Umklapp processes. 

In view of this manifestly incorrect result, Ranninger re-examin- 

ed his derivation and found a very subtle way in which his previous 

result had to be corrected. It is doubtful if the correct way of 

handling the ingenious and sophisticated approach would ever have 

been found without the knowledge of the correct answer from the 

Boltzmann equation. 

Another example concerns the use of modern techniques to cal- 

culate the electric conductivity of metals with impurity resistance, 

which we have already discussed several times. I refer to work by 

Edwards (1958) and by Chester and Thellung (1959), which was done in 

the same spirit, though with different techniques. 

Chester and Thellung start from the Kubo formula, which is not 

easy to evaluate directly in the case of a constant field, as we have 

seen. The important quantity to evaluate in that formula is 

j(t) j(O) (62) 

where j (t) 

expressed as 

is the electron current at time 

U(t)j(O) U(-t)j(O) 

t. This can also be 

(63) 

where U(t) is the time evolution operator for the full Hamiltonian, 

including the scattering potential, but not the electric field. U(t) 

is now expanded in powers of the scattering potential and the leading 

terms collected, following the principles set out by van Hove. 

In applying van Hove's ideas to an expression of the form (63), 

it is natural to pay attention to the terms which would contribute 

to the expectation value of U(t). If only these terms were included, 

one would obtain for the conductivity the result e2n~/m, with l~ 

being the total collision rate. As we saw earlier, this is not cor- 

rect, because the conductivity depends on ~l' the transport col- 

lision time. This knowledge helped the authors to look for the source 

of the difference, and they found that it was essential to combine 

the expansion of U(t) and U(-t); there are terms in each which 

vanish when averaged separately but whose product is non-zero. 

In the isotropic case this immediately led to the extra cos~ 

term in the definition of the transport collision rate, and hence to 
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the right answer. 

For the anisotropic case we know that the transport collision 

time is defined by an integral equation which, in general, does not 

have an explicit solution. In cases in which the Boltzmann equation 

is justified, any other correct evaluation of the conductivity must 

therefore lead to the same integral equation, or its equivalent. 

Chester and Thellung found that, in the anisotropic case, the 

terms which must be taken into account from an infinite series of 

powers not of a number, but of an operator. The way to sum the 

series is first to diagonalize the operator. The equation defining 

the eigenvalues of the operator turns out to be identical with the 

equation defining the eigenvalues of the Boltzmann collision opera- 

tor, and from this the equivalence follows fairly directly. 

These examples show the power of the Boltzmann equation when it 

is appropriate. It is certainly not as general as the Kubo formula, 

but difficulties arise in the evaluation of the latter. If one uses 

very abstract methods for its evaluation, one may lose sight of the 

physical content of the approximations made. This applies particular- 

ly to the use of Green's function techniques. 

These lead, in principle, to an infinite set of coupled equa- 

tions~ which cannot be solved directly. It is customary to simplify 

these by some kind of "decoupling" in which one assumes the higher- 

order functions expressible in terms of products of the lower-order 

ones. It is usually very hard to understand the nature of the error 

made in this step, and it is hard to check the reliability of the 

approximation, unless one already knows the answer from simpler argu- 

ments - in which case the more abstract method is not really ne- 

cessary. 

XIX CON CLUS I0 NS 

Our discussion has been confined to a very simple class of trans- 

port problems. Apart from the exclusion of dense or strongly coupled 

systems, we have excluded the possibility of long-range interactions, 

as in plasmas and other dense systems, all cases of spatial inhomo- 

geneity. Nevertheless the limited range of problems gave us an 

opportunity of examining some general basic principles, which are 

applicable much more generally than the particular problems considered 
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I. INTRODUCTION 

Time reversal invariance has always been associated with the 

basic laws of dynamics. The discovery of irreversible processes 

satisfying quite different evolution equations (Fick's law, heat 

conduction ...) at the beginning of the 19th century came therefore 

as a great surprise. 

The existence of irreversible processes is summarized in the 

second law or principle of Thermodynamics. This principle states 

that there exists a function, the entropy,whose time variation can 

be split into two parts 

d S = d S + d S (1.1) 
e 1 

such that d i S, the entropy production inside the system is non- 

negative. Therefore, when the system is isolated (des = 0), the en- 

tropy never decreases. 

But irreversible processes appear not only in connection with 

classical phenomena such as heat conduction but also at a much more 

fundamental level, at the very core of quantum mechanics, in the 

measurement process, or in elementary particle physics,through the 

existence of unstable states. 

For a very long time, the second law was mainly used to describe 

the final equilibrium state, corresponding to maximum entropy or 

minimum free energy. However, the emphasis has been shifting towards 

non equilibrium processes~o a situation more and more away from 

equilibrium, because one of the unexpected features which has been 

noticed in the last years is that deviation from equilibrium may be 

a source of "non-Boltzmannian type of order". - This is certainly a 

very important aspect for the understanding of many manifestations 

of nature around us. 

Therefore, one has to understand more clearly what entropy and 

irreversibility mean from the point of view of classical or quantum 

mechanics. 

We shall first discuss Boltzmann's interpretation of Entropy [~ 

Boltzmann's approach is based essentially on the recognition 



36 

that we are dealing with very complicated dynamical systems. For 

this reason he felt free to replace the dynamical description by a 

stochastic process,through the use of a kinetic equation. 

From this kinetic equation, one can define an ~-quantity and 

one can prove from this equation that ~ can only decrease. Boltz- 

mann was therefore led to identify his ~-quantity with entropy. 

Numerical experiments [2][51 can be performed,showing indeed 

the decrease of the ~-quantity as predicted by Boltzmann. 

However, more sophisticated experiments can also be done where 

at some instant, all velocities are reversed. In that case the Boltz- 

mann ~-quantity first goes back to its initial value. (Loschmidt 

paradox [41 ). 

This behavior appears as very unsatisfactory from the point of 

view of thermodynamics. If this was true, it would mean that over a 

macroscopic period, there would be a decrease of entropy correspond- 

ing to an antithermodynamic behavior. If the entropy produced during 

one period could indeed be suppressed during a later period, then 

the very definition of irreversible processes would become question- 

able. 

Also, if there would be thermodynamic as well as non-thermody- 

namic types of behavior, could we then speak at all of a second law 

of thermodynamics? 

Boltzmann recognized that when we reverse the velocities, we 

cannot expect ~ to decrease,the reason being tha%when we reverse 

the velocities we introduce correlations between the particles and 

the hypothesis of molecular chaos is no longer valid. This then would 

lead to an antithermodynamic behavior. 

However, molecular chaos is only a special initial condition. 

Therefore, if irreversibility will be based on this initial condition, 

we would again be in trouble to understand the generality of the 

second law. 

To show in more detail the difficulty involved in Boltzmann's 

interpretation of irreversibility, we shall use for illustration 

a simple model, the Mac Kean Model. 

II. THE MAC KEAN MODEL 

The Mac Kean model [5][6][7][8] consists of a system of n par- 

ticles each of which can have only the velocity +l or -l~ and with 

a very simple law of collision. When two particles with velocities 
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@~ ~±a) and ~ { T & )  collide, they emerge with velocities 2~ , ~ 

With probability ~/~, the final velocities respectively. are 

a 

or ~ : ~ a~ , ~ = &t (2.1) 

The different possibilities are 

~4 ~4 -@ +4_ 

~4 ,-'--4. \ ~A -<h 

÷~ -4_ / -~,+~ " 

( 2 . 2 )  

The corresponding master equation for the N distribution function 

takes the form 

( 2 . 3 )  

One can look immediately for factorized distribution functions 

corresponding to molecular chaos: 

( 2 . 4 )  

with 

(2.5) 

Replacing in the master equation (2.3) ~ by (2.4), one obtains 

immediately a non-linear equation for the one-particle distribution 

function 

6£ (2.6) 
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which can be written using (2.5) as 

(2.7) 

in which ~+ - :~(14,~) 
The remarkable feature of this model is that this non-linear 

equation can be solved immediately. One obtains 

-b 

÷[~ -%' ~ A% A-A[4-~ _~) ; A = ~÷[W-o]-~ (2.8) 

One can now introduce Boltzmann's ~ quantity 

which in this case takes the form: 

and Verify that it can only decrease in time 

(2.9) 

She equ i l ib r iu~  oondit ion is the extremum of a~:  ~ .  = ' A -  (One has 
to discard the solution ~÷= 4__ corresponding to a trivial invariant 

I 

of motion due to the collision law which does not alter two particles 

both having the velocity * 4.). 

One can now discuss the evolution of the Mac Kean model without 

introducing a priori the factorization condition (2.~). (see F. 

Henin [7][8] for a detailed analysis). The evolution of the system 

can be described in terms of the moments 

and as JZ ~ = I M~ even 

(2.11) 

~ = ~.~: ~ odd 

the only independent moments are 

(2.12) 

(2.13) 
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Using the master equation (2.3) one obtains easily the equation 

describing the evolution of the moments 

~,~-  ~ ~-- 

for ~ -< ~ _< kV 

If one looks for moments such that p is much smaller than k~ 

~ << hr ~ one obtains a simplified form 

- - 

which admits the factorized solution 

with 

0~.~, : ~ ;-&'>~ (2.16) 

~ : - ( 2 . 1 7 )  

But  t h i s  i s  a v e r y  s p e c i a l  case c o r r e s p o n d i n g  t o  p a r t i c u l a r  i n i t i a l  

c o n d i t i o n s .  I t  s i m p l y  shows t h a t s g i v e n  a f a c t o r i z e d  i n i t i a l  c o n d i t i o n ~  

it propagates during the evolution. 

However, one can immediately consider situations in which Boltz- 

mann's entropy has even a wrong qualitative behavior. For illustration 

consider equation (2.15) for the one particle moment 

initial condition ~[o] : ~[~)would correspond to the Boltzmann an 

situation, but if one chooses \%~ > \~\ with opposite sign~ one 

obtains an "antithermodynamio behavior"~Boltzmann's ~ quantity 

will first increase! This does not mean at all that the system is 

not going to equilibrium. In fact, Mac Kean's model corresponds to 

a Poisson process and it can be proved by studying the spectrum of 

equation (2.14) that the distribution always goes to equilibrium 

whatever the initial conditions. 

One can even construct a Liapounoff function such as 

w h i c h  i n  te rms o f  t he  moments i s  g i v e n  by [71181 

(2.19) 
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This function decreases in time whatever the initial conditions 

: - ( 2 . 2 0 )  

Equilibrium is reached when 

Mr=~= . = X~ for which (2.20) vanishes. This shows that 

irreversibility is not related to molecular chaos but has a much 

deeper origin. Also entropy in general is not linked to the one 

particle distribution, but in general has to be linked to the Lia- 

pounoff function (2.18) which is related to the complete dynamics 

of the system. O~ly in very special situations can one reduce 

entropy to a function of the one particle distribution function. 

Only near equilibrium, can one express it in terms of macroscopic 

quantities and then the second law takes its phenomenological form. 

But in general the second law is a theorem in "d~rnamics" and not in 

phenomenological Physics. 

The consideration of Mac Kean's model shows clearly (see [7] ~]) 

that if one starts from a non-factorized initial condition, in the 

course of evolution the correlations die out, the longest correlation 

time being contained in the linearized Boltzmann equation. Before 

reaching equilibrium,the system evolves through the linearized 

Boltzmann equation. But in general the system goes to equilibrium 

without satisfying at any time the non linearized Boltzmann equation. 

All these results can be generalized to other soluble models~such as 

the Kac model (Henin (to appear)). 

The empirical success of Boltzmann's equation, the physical 

character of the assumption on which it is based, show that it 

constitutes an important step into the right direction. However, 

Boltzmann's arguments contain a lot of plausible assumptions which 

have to be made more explicit and related to dynamics. 

In the following we shall present a method to construct a Lia- 

pounoff function playing the role of Boltzmann's~quantity, and which 

can be constructed for a wide class of dynamical systems. 

Our main problem will be to understand how cross sections (or 

related quantities) can at all be introduced into the equations 

describing the time evolution of dynamic systems. It has to be kept 

in mind that both in classical and quantum mechanics we start usually 

with a hamiltonian description. The question is then what is the 

relation between a dynamic description in terms of the hamiltonian 

and the dynamic description in terms of cross sections or more 
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generally in terms of physical "processes". We shall see that we 

begin to be able to give an answer to this fascinating question. 

III. 

b] ) 

where 

IRREVERSIBILITY AS A SYMMETRY BREAKING 

Our starting point is the Liouville equation (see for instance 

-{ ~ ~,~ ~ Poisson Bracket 

= (3.2) 
U ~ [ a ~]_ Commutator 

L is a hermitian superoperator (in the quantum case, it acts on the 

space of density operators) (see [i0][ii] ) 

L : t ~ (3.}) 

The most fundamental property of the Liouville equation is its 

" L~ - invariance", that is,it remains invariantunder the simultaneous 

changes 

L ~ -L (3.~) 

t --7 -t 

This kind of property does not exist in macroscopic equations for 

thermodynamic quantities. For instance, in the heat conduction 

equation 

~-T" _ ~< -~T (3.5) 

the change ~-~-~ leads to a completely different equation as it has 

no meaning to reverse the sign of the heat conductivity ~<which is 

a positive number. 

The Fourier equation describing the evolution to uniform tem- 

perature in the future is changed by the operation ~ -t into an 

"Anti-Fourier equation" leading to uniform temperature in the past. 

Another example is the evolution equation for free particles 
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which is ~_~ -invariant (L-->- L corresponds here to ~--~o~). 

But if one adds a collision term 

~f 

I 

the equation is no more invariant as the collision term is not 

affected by the change (~--~-b V-->-~- ). 

The ~h-invariance does not prevent,for instance,mixing but 

this kind of process is described by laws symmetrical in time w~ich 

do not permit the introduction of a Liapounoff function which could 

then be related to entropy. 

The recent development of ergodic theory has greatly increased 

our understanding of the dynamic conditions to be satisfied to obtain 

"mixing". However, for the reason we have just mentioned, the ergodic 

approach has till now been unable to come even near to the problem we 

are discussing here: the microscopic meaning of entropy.On the other 

hand, the method we shall discuss now, permits to formulate this 

problem in general and to solve it rigorously in simple cases. 

Let us start with the formal solution of the Liouville equation 

(3.1) which can be written as 

(3.8) 

i n  terms of  the r e s o l v e n t  ~ -  L~ - I  o f  the L i o u v i l l e  o p e r a t o r ,  and of  

the contour  C. 

In the case of the initial value problem,the contour C + has to 

be traced in the upper half plane corresponding to the complex 

variable. For a final value problem,on the contrary,the contour, must 

be taken below the real axis ~9]~12] 

C c 

The question is to know if the different choices of contour generate 

different solutions. If the solutions are the same, we shall be in 

the ~reversible" case. This is the situation when the singularities 

of the resolvent are isolated poles on the real axis. 

However, if continuous parts appear in the spectrum, we'll 

have to take into account analytic continuation. In that case the 

solutions will in general be different and we may expect Mthermodynamic 

behavior". 
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To discuss the resolvent, it is convenient to introduce ortho- 

gonal hermitian projection superoperators ~,~ such that 

• = ~ " - - e ~  = ~ " e =  o 

fixing the language in which the results will be formulated. Generally 

P is chosen as projecting onto the diagonal elements in the represent- 

ation in which some model Hamiltonian ~o is diagonal 

For this reason ~ is called "vacuum of correlations" 

Let us also introduce a set of auxiliary irreducible operators, 

the collision operator 

the creation (of correlations) operator 

~L~ (5.10) 

the destruction operator 

~ - ~  
~LV (5.11) 

and the propagation of correlatio~ operator 

(5.12) 

~- QLQ 

the most important of which, the collision operator, ~ corresponds 

to a transition from the vacuum of correlations to the vacuum of 

correlatio~ through a dynamical evolution in the correlation space. 

One can then express the resolvent ~-L) -~ in terms of these 

operators. The result is ~15][1~][15] 

In general this expression is quite complicatedto analyse, and for 

the sake of illustration, we shall consider a simple case,coming 

back later to the general situation. When the relaxation time is 

much larger than the duration of a collision, the asymptotic limit 

(for large ~ ) can be described in terms of the limit ~ --~ o . [9~ 

This leads for the evolution of the diagonal elements Q~ of the 



44 

density operator to the expression 

with 

(3.15) 

~LV (3.16) 

(P has been chosen such that ~L~=o) 

In the limit of large systems, the sum over the intermediate states Q 

involves an integration. Then one can formally write 

the second term being understood as a principal part. 

When the first term in ~QL~ exists, we obtain a new type of 

behavior. Indeed if we now perform the change L--~-L, this term does 

not change sign. 

~[o~ which is the operator describing the evolution of ~o(3.15 ) 

contains an even part and an odd part in L . We have a breaking of the 

symmetry L~ 

Furthermore we have two other very important properties which 

appear at this point. 

First the ~ven part of the collision operator -~@~) has a well 

defined sign 

- o 

This is exactly the property necessary to ensure that the system will 

go to equilibrium. The even part acts as a kind of "friction". This 

friction leads then in turn to the validity of the second law ~ithout 

any appeal to probabilistic or stochastic processes. On the contrary 

the relation with probability theory emerges, as a consequence of 

dynamics. Indeed, in the simplest cases (see ~16] ) it may be under- 

stood in terms of Markoff processes. 

In conclusion this theory gives the symmetry breaking and this 

symmetry breaking induces the right sign to obtain the second law of 

thermodynamics as well as the properties necessary to go from a 

dynamic description to a description in terms of probabilistic 

processes. 
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IV. STAR UNITARY TRANSFOR~TION 

The str{king difference between the Liouville equation and 

equations as Boltzmann, FokkerPlanck equations lies in the appearance 

in the collision operator of an even part in L. Before we discuss 

the origin of the "symmetry breaking" mere in detail, let us make some 

preliminary remarks. Let us write the Liouville equation expliciting 

the different components 

to - Uo,, f,, ,- U, , , .  

in which Loe = PLP, Loc = PLQ, Lco = QLP ... 

In an arbitrary representation, one cannot talk of well defined 

units. For instance, starting from an initial conditian in which 

there would be no correlation, no relation between the units(~ c = 0), 

after some time the correlations because of (~.16) will appear. 

Now if one goes to the representation in which the Hamiltonian 

is diagonal, then the Liouville equation takes the form 

which is certainly not the answer we are looking for. The units are 

now distributed once amd for all on the different levels and remain 

there. However what we want to obtain is a description of the dyn- 

amic evolution in terms of physical processes such as decay of excited 

states or collisions between the particles. Clearly the units ob- 

tained through diag0nallzation of the Hamiltonian, which are by defin- 

ition not interacting, are distinct from the units one observes, 
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and participate in the various physical processes. 

Now any canonical transformation will lead to a form either of 

type (#.l)~ ~ither of type (4.2). 

Having exhausted the possibilities of canonical transformation, 

we have to try non-canonical transformation which would lead to a 

description of the following type 

where the~ operator would be d~ssipa~ive. The problem is to know 

if such non-canonical transformations exist and which type of trans- 

formation is needed. The remarkable point is that if such transform- 

ation exists, the physical nature of the problem requires a very special 

class of non-unitary transformation~ the class of star-unitary trans- 

formation @  . 

The star-hermitian conjugation @ is defined as the combination 

of the hermitian conjugation and the L-inversion,(we shall denote) 

introduced previously 

This conjugation is fundamental and it can be verified immediatly 

that the various operators which have been considered (~L,-~@(0)) are 

star hermitian. They are such that 

%L~ ~ : ,IL (~.5) 

In general, there are different realisations for star hermitian 

operators; either they are even in L and hermitian, either they are 

odd in L and anti-hermitian, either contain both parts. 

Having defined star-hermitian conjugation one can introduce now 

star-unitary transformation ~l that is, such that 

= (~.6) 

The importance of star-unitary operators stems from the fact that one 

can show on physical grounds they are the only generalisation of unitary 
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operators which leave invariant the average values of observables. 

Indeed in the representation obtained by an L-dependent trans- 

f ormation [lO~ ~l] . 

A (4.7) 

Note that because of the equivalence between Schr~dinger and Heisen- 

berg picture, if@~ is defined through the A transformation, ~A should 

be defined through~ I ) one obtains immediately 

(4.8) 

using star-unitarity conditions. 

Furthermore the star-unitary transformation preserves the star 

-hermitian character of operators but not the hermitian or anti-herm- 

itian properties as does the unitary transformation. As a consequence 

in the transform of the Liouville equation 

(~.9) 

with 
--l 

= A L /N (4.1o) 

i~is star hermitian but has no longer the anti-hermitian property of 

iL. It will contain in general two parts~ a hermitian part even in L 

and an odd anti-hermitian part. 

We still need another important property which will be assumed 

for the moment and proved later (~5) to be a consequence of the 

construction of the A transformation: the even part i~ is non neg- 
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ative 

We can then construct a Liapounoff function [l~ which is the 

following quadratic functional of the density operator in the 

physical representat$0~ (see (2.18)) 

(~.ii) 

which can only decrease in time 

ab 

The system will evolve to equilibrium until ~ takes its minimum 

value compatible with the normalisation of ~. It is easy to show 

that thermodynamical equilibrium corresponds in the physical repres- 

enation to the situation where all the quantum states have the same 

probabilities and random phases. 

The remarkable property (#.13) of~gives the possibility of 

a dynamical interpretation of entropy which does not present the 

difficulties of Boltzmann's, in which for instance the Loschmidt 

paradox disappears. 

Indeed if one considers an experiment involving an inversion 

of all the velocities~ the Boltzmann~quantity would increase instead 

of decreasing at some stage of the evolution. 

~o ato t 

Ill] 
On the contrary, the~-~ function will be at any time decreasing 
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to 

However at time t o when one inverses the velocities, it takes 

account of the fact that the system at that moment is not isolated. 

One has to introduce external devices which return the velocities 

and that requires some entropy flow to bring the system into a new 

highly organised state having long range correlations. Afterwards, 

the system being isolated again, the ~ quantities decrease. 

V. CONSTRUCTION OF THE /k-TRANSFORMATION 

The construction of the star-u~itary transformation/k involves 

t ree steps D0  71 (see also D ,D81 Dg . 
We construct first a special solution of the Liouville equation 

Out of this special solution one builds a projector which in 

general is a star-hermitian projection operator. 

From the star-hermitian projector, using Kato theory [20] , 

one constructs the /k transformation. Starting from the Liouville 

equation (4.1) 

'~ ~o -- ~'-¢o ~o + ~--oa ~ (5.1a) 

one looks for a special solution ~ satisfying the condition that the 

diagonal elements obey a separate equation and that the non-diagonal 

elements are functionalm of the diagonal ones: 

(5.2a) 
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The conditions for ~o, ~ to be a special solution of Liouville 

e q u a t i o n  i s  t h a t  t he  ~ o p e r a t o r  s a t i s f i e s  t he  n o n - l i n e a r  i n t e g r a l  

e q u a t i o n  

and that C is related to ~ by 

0 (5.3b) 

These integral equations imply the following relations between 

C and 

@ = Loo ÷ Lot C_ (5.4) 

C@ : Leo + Lc~ CL (5.5) 

and combining these two equations, the non-linear equation for C 

Ctoo + CLo~C : L~o ~- Lc~_C (5.6) 

It is simple to see that introducing (5.4) and (5.5) into (5.2): 

~ : L ~ ~ L y~ 



51 

one simply recovers the initial Liouville equation. This means that 

we have constructed an exact, special solution of Liouville equation. 

Let us introduce now star-hermitian conjugate operators of C 

and 

: C_ (5.?) 

for which we have the relations similar to (5.4-6) 

(5.8) 

~] : Loo ~- ~ Lmo (5.9) 

Loob ~- b t~ob = Lo~ + bt~_~_ (5.11) 

As a consequence of these definitions and of the relations 

obtained, one has the following commutation relations: 

The last two expressions being particularly interesting as they permit 

to prove that our special solution generates a projector. 
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Comparing the formal solution of 

that is 

with the special solution 

~o C~) = ~ 9 to) (5.1v) 

one can easily make the connection between (5.16) and (5.17) if one 

multiplies (5.17) at the left by 

--I 

A : ~-e + me__ (5.~8) 

to obtain 

So one cnn make the identification 

~'o~O~ : A (_m+~3 2(.,~] (5.2o) 

t ~  

showing that in the course of time these equations keep their form. 

Considering also the non-diagonal part ~ (5.2b) and the evolution 

equation (5.17) one obtains for ~Q~) 

7__@) ~Co) (5.22) 
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for any h ~o s which is a special solution for positive time, with 

the semi-group property 

(5.23) 
for h~>b~ ha 

The limit of the ~[[~)operator when ~ goes to zero by positive value, 

is the operator -~ 

-q -  =- L -P ÷ e ~ ~ {.'~ ÷ ~ b (5.24) 

which has obviously the property of a projection operator as 

so that 

"I'T "~ = (P + C) A (P + D) (P + C) A (P + D) 

= (P  + C) A (P + DC) A (P + D) 

= (P + C) A (P + D) = 

-1-~ -~ ~ ~ (5.251 

and furthermore by construction~1[is star-hermitian 

= - G  (5.26) 

The most remarkable property of the-~projection operator is 

that it commutes with the Liouville operator L 

- i v  L = L_--G (5.27) 

The demonstration follows from the different commutation relations 

(5.12-14). 

- i l " L  : (P + c) A (P + D) L 

= (P + c) A~(P + D) 

= (P  + C ) p A  (P  + ])1 

= L (P + C) A (P + D) 

= L'IT 

This property has a deep physical meaning related to the fact that 

because of it,-~satisfies ~ separate equation of evolution. 1-~-defines 
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a subdynamics. 

It is to be noticed that we have been considering only positive 

times. The same procedure can also be applied for negative time 

(h< O) and in that case one would have obtained a projector-~ I =~Y(-L) 

such that 

l I 

-11- L ~ L-T~- (5.28) 

which should be used in oonnection with final value problems while 

(5.27) has to be applied for initial value problems. The description 

of time has been brought into the mathematical structure of the space 

in which we are working. 

As far as the relationship with spectral theory is concerned, 

the eigenvalue problem: 

L~ -_ m#_~ ~ (5.29) 

when one compares the integral equation (5.3a)~ has to satisfy and 

the formal expression of ~(~) as given by (3.10), one can immediately 

see that it is equivalent to 

(5.30) 

or in a more compact form to the resolution of the non-linear problem 

t211: 

@(%) being a non-hermitian operator, there is no guarantee that this 

eigenvalue problem has necessarily a solution. However if it possesses 

a solution, one can make the following classification. Either the 

eigenvalue is situated on the real axis and in that case it will give 

a hermitian operator~ 

+ 
~V = -TV (5.32) 

Either its solution is in the lower half-plane giving a star- 

hermitian projector 
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The last step proceeds with the construction of the star-unitary 

transformation A with the use of Kato's theory ~20~. 

Kato's construction permits us to make a similitude between 

two projection operators. Suppose a given P and a family of 

projection operators-TT(~) depending on a parameter ~ (which may be 

considered as the strength of the interaction: 

with the condition 

then 

(5.35) 

(5.39) 

will give us a unitary operator if A is hermitian 

~= ~'~ ~ #x + ~ ~ (5.36) 

and a star-unitary operator ~ for star-hermitian -T~ 

The main theorem of Kate ~20~ states that you can generate the h 

transformation through the following differential equation 

~a _ ~x~ ~(~ (5.38) 

where ~ is given by 

~ ~ _ 
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So that once we have~, and the condition 

differential equation to obtain A. 

If/k is written as 

(5.34) one integrates the 

/k = C X (5.~0) 

the operator ~ has to satisfy a differential equation which corres- 

ponds to the one derived by Mandel and Turner [2~,~3]before the rel- 

ation between our approach and Kato's theory was understood. 

It is very easy to show that the main requirements imposed on 

the transformation are satisfied. The dissipativity condition which 

requires that the operator 

: A-' L #X (5.~1) 

and in particular 

4 = ~@I ) = qZ o o (5.~2) "o 

with 

"Ko = ~/kl ~ (5.43) 

has a part with a definite sign , comes simply from the fact that 

being related by a similitude to ~corresponding to the eigenvalues 

of z - ~(~0, it has a negative imaginary part (Im zn~O) , that is, one 

considers contributions from singularities in the lower half plane. 

Another property of the kinetic operator is its bloc. diagonal- 

isation, which is by construction. As~L = Lq~ (5.27), one has im- 

mediately 

(5.~) 

It is also important to note that Kato's theorem gives the ess- 

ential physical meaning to which of the roots of the dispersion relation 

z - ~(z) we have to consider. The dispersion equation has in general 
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many roots but if we want to solve Kato's equation we have to consider 

the boundary condition (5.34). That means that one has ~ take as the 

root the root which,when I goes to zero, comes to the real axis (it 

is not necessarily the c~osest to t~ne real axis). 

The contribution from the other roots are not lost, they are dis- 

tributed on the other subspaces. 

In fact the version presented here is somewhat simplified. One 

should have considered a complete set of projection operators 

~t ~ ~W = o (5.45) 

and continue them into a complete set of star-hermitian projection 

operators 

l 

(5.76) 

This would involve the solution of an infinite number of dis- 

persion equations each of them satisfying the Kato continuity con- 

dition. This procedure would have given us a sufficient number of 

roots to represent any arbitrary initial value problem. 

VI, POTENTIAL SCATTERING 

This chapter is devoted to the illustration of the general 

formulation of the star-unitary transformation on the example of 

scattering theory. 

The derivation of a ~ross section in potential scattering 

appears as the simplest example which exhibits already most of the 

features for which our approach is of interest and therefore very 

suitable for such an illustration. 

Furthermore collision theory is quite an important subject as 

much of our information on the interaction between the particles comes 

from scattering experiments and also, it was through the use of Nae 

invariants of collision that Boltzmann was able to establish his 

theorem. From that time, the treatment of dissipative processes 

has always been in terms of "physical processes",such as scattering, 

spontaneous and induced emission of light, .... Outstanding examples 

are the papers by Planck on the black body radiation [24] and by Einstein 
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on the interaction between ma~ter and radiation [25]. 

We know how to calculate, at least in simple cases, the scatter- 

ing cross sections from the interaction in terms of the t matrix (or 

S-matrix). Here however we are emphasizing a different problem: in 

which sense is scattering describing a temperal process? how to go to 

a time behaviour of a dynamical system in which the collisions are the 

generators of evolution? Usually the starting point of scattering 

theory is the Schr~dinger equation 

where H is a sum of a kinetic part H o and of an interaction part ~ 

(assumed to be a short range potential) 

-_ ~ ~ -~- (6.2) 
o 

The solution of Schrgding~equation is analysed in terms of, for 

instance, the outgoing eigenfunctions of H 

solutions of the Lippman-Schwinger integral equation 

the ~>being a complete set of eigenfunctions of H with the same 

eigenvalues as the I~2>) o 

In terms of the ~-matrix defined as 

(6.5) 

- ~ ~-- ~ (6.6) 
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(6.7) 

E~ressing the scattered part of ~)in terms of I%#>, one ean 

calculate the probability of finding a given free state in the scat- 

tered part, the time derivative of which in the limits of long time 

and infinite beam gives the cross section. As we mentioned previously, 

we are interested in a different problem. We want to describe scat- 

tering as a temporal process, in which the collisions are the generators 

of the evolution. 

In the first place, let's emphasise that in a strict sense, 

cross sections are not reducible to an Hilbert space concept. A temp- 

oral description of scattering is only possible in the space of density 

operators (we have called superspace). To illustra9e this point, let 

us consider the time evolution of the density operator ~ as given by 

the Liouville.von Neumann equation (3.1). 
Its formal solution may be written in the interaction represent- 

ation as 

where the unitary operator ~[<~)defined through 

( 6 . 8 )  

UttV,~'] = "~- ~ .0_ (6.9) 

satisfies the integral equation 

t 

~o~ -~o~ with 

To make our p o i n t  c l ea re r~  l e t  us cons ide r  the lowes t  o rde r  

c o n t r i b u t i o n  ( i n  the coup l i ng  parameter  k )  to  the s c a t t e r i n g  from a 

s ta te  ~ t o  a s ta te  ~ ~ : 
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This involves the integral 

o o 

The asymptotic limit of this expression for large ~ is 

If we had been working with the wave function and taken the asymptotic 

limit on the wave function before performing the product, we would have 

obtained the divergent result 

As it has been noticed by Van Hove [26~ and others[27~his result has 

a simple physical interpretation: the contribution arises from events 

which are quasi-instantaneous on the long time scale corresponding to 

the interval 0 - 

f 

)o 
t 

In other words the h factor comes from "constructive interferences" 

between the two wave function spaces involved in the time evolution 

of the density operator. Furthermore~ along with the long time limit, 

in the usual theory, one has in order to obtain a non.vanishing trans- 

ition rate, to perform other limiting procedures as the infinite beam 

limit which has also to be performed on the square of the amplitude. 

Therefore, scattering introduces well defined phase relations and as 

a result the scattered beam can no longer be described in the space of 

wave functions [28]. One can now take two attitudes: the basic 

description is in terms of wave functions satisfying the Schrgdinger 

equation (or classically in terms of trajectories). The result 

corresponds then to some asymptotic approximation (large t , large wave 

packet) of the real description, performed on the level of the prob- 

abilities (square of the amplitudes). 

But one can go one step further and argue that the exact motion 

of the wave packet (or the classical trajectories)are of no physical 

interest in the experimental situation we are dealing with. 

In this case we have to reforms!ate dynamics in such a way that 
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cross sections become the generators of evolution. As scattering 

introduces interference effect, such a description will be associated 

with the space of density operators. 

One ultimate goal will be to obtain an equation of the form 

(which is the definition of cross sections) as a direct, exact conse- 

quence of the Liouville equation. 

We shall treat here the problem of potential scattering. We 

shall consider a system of enbities specified by some quantum number 

k, enclosed in a quantization box of volume L 3. Their energies are 

given by ~)k ~e~ ~ @~Ok~ ~ ] the spectrum of which becomes continuous 

in the limit of large volume. 

The free Hamiltonian of this system~ taken as 

~@ = ~-'- ("Ok ~k)(k\ (6.11) 
k 

I ~>being a complete set of normalised eigenfunctions corresponding 

to the eigenvalues k. The interaction is assumed to have the form 

HT : 7------- ~kk' \k> <k'~ (6.12) 
kk' 

in which f~k ~ is of order L -3 and because of the hermiticity of the 

Hamiltonian is such that 

All the quantities appearing in the formalism are derived from 

the resolvant of the Liouville operator (~ - L) -I the matrix elements 

of which can be expressed as a convolution of the matrix elements of 

the resolvant of the Hamiltonian 

I 
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I 
where the contour C runs from right te left in the above half 

plane, below z (~ ~ ' ~ T ~  

Using the identity 

l I I !  I I " I  
9_ - ~ %. - 1,{~, %- %4= ~: - %,4 (6.15) 

and the definition of the~C-operator 

m - - ~  m - ~ (6.16) 

the resolvant of H can be written as 

- V~ ~ _ ~ o  ~__ ~ o ~:_ ~ o  ( 6 . 1 7 )  

Its matrix elements are 

~_ - -  V l  ~ _ o . ) k  ' 

-~.,Db. ~ ~ -  o D k l  " 
( 6 . 1 8 )  

in terms of the h-matrix elements which are solutions of the integral 

equations 

One obtains for (6.17): 

~: - c")tJ' , 66 .19 )  
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' ' 

(6.20). 

At this point a remark should be made about the procedure and the 

approximations which we will use in the following. 

As already emphasised, the limit to the continuous spectrum is 

essential as it introduces the symmetry breaking, the distinction be- 

tween the retarded and advanced solutions. 

As it is usually done, we shall delay as long as possible the 

limiting procedure ~-, ~@) but we shall keep in all expressions only 

the dominant term in the Volume. 

That is, if in an expression, one has terms independant of the 

volume, one shall neglect terms in T. -3. If the leading term is in 

L -3 For illustration, , one has to drop contributions of order L "6. 

if in the expression (6.20) for the matrix elements of the resolvant, 

one has k I = k 3 , tk k ' which is of order L -3 , has to be neglected 

with respect to the f~rst term ~k k " But, if the expression 
. 4 2~ 

appears in a summatlon over k~ bo~h terms have to be k~pt as they 

are giving a contribution ef order unity in the volume. 

,.* Subd~Tnamics 
In this p~oblem one can easily construct the different sub- 

dynamics. In the case of discrete spectrum, the decomposition into 

subdynamics is a quite trivial problem, as the contour can be easily 

split into a sum of contours around the singularities of the resolvant 

which are isolated, each of these singularities given the contribution 

to a subdynamic. 
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However, when one goes to the limit of large volume , these 

singularities coalesce into a cut and the decomposition in subdyn- 

amics when the limit is taken becomes a quite delicate procedure. 

Nevertheless this decomposition is still possible through ~e use of 

proper analytic continuation procedures. Here we shall be mainly 

interested in the lVsubdynamic which arises from the contribution of 

the contour ~o encircling the ~: o singularity. 

The element of the~ projecter are given by 

=- 

/ 

ti.~ %-I__ (6.21) 

where ~is a contour around z = 0. From the above expression, one 

obtains 

A~k, kk - 

in which the terms of order 

to the term i . 

~ n  ~ ~'- c,.~ k ~.L ~_- cO~. 
~'o C./ 

(6.22) 

~ have been neglected with respect 
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For Akk,k, k, which can be written as 

one has to evaluate the residue of the integrand at the double pole 

z = O~ 

To obtain this expression, one has taken into aceount the fact that 

~ ~  and that at the limit ~-~L~ , the C I contour goes to 

the real axis from above. 

It is now an easy matter to perform the derivation with respect 

to z and to take the limit z-,+i~ . The result is 

l 

(6.23) 
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o 

The other elements of-~ subspace are simple to evaluate. 

i o n  f r a g m e n t s  a r e  o b t a i n e d  f r o m  

The creat- 

~C.. A ")~,,~.,,~.~ ~:_ - ~ , , ~ . , ~  (~.~,+) 

For illustration, let us again derive in detail the expression for 

Ck'k,kk 

" ~  - ~ u  a ~  , ~ '  . , 

so that one obtains 

~e ~ ~0~- ~ C 

and similarly, one gets the following results 

~e - o b k ~  oOuq 
(6.s6) 

CU~ ,, ' t,.~. " = - -  

( 6 . 2 7 )  
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The destruction fragments 

and are given by 

are evaluated from the relation 

(6.28) 

~kk,kk = 

kk, kk ~ m 

(6.3o) 

= -- (6.31) 

We can now evaluate the important collision operator ~ solution of 

z - ~(z) = 0 , the matrix elements of which are given by 

One obtains immediatly 

and for the kk,kk element: 

(6.33) 

@ 

If one wishes to go the the ~-Tcomponent of the physical representation, 

one has still to introduce the dressing operator ~. 

It is easy to show that the dominant contribution in the volume 

is 
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and 

wh ich  we have n o t  e ~ l i c i t e d  he re  as i t  wou ld  n o t  be needed.  

Very  i m p o r t a n t  p r o p e r t i e s  a re  r e l a t e d  to  t he  so c a l l e d  s t a r  

c o n j u g a t i o n .  I f  one r e p l a c e s  T, by - L  i n  t he  e lemen ts  o f  the  r e s o l v a n t  

(6.1~), one obtains 

• .~, ~_f÷ 14 

L 

in terms of the resolvant (z + H) -1 of the Hamiltonian which can be 

d e r i v e d  f rom t h e  f o l l o w i n g  r e l a t i o n :  

a s  

kk-k~ ' H~ , (6.37) 

= . . . .  ' (6.38) 

With this expression, one can evaluate in the same way as above the 

Cl A l D # with the result 

C I = D + (6.39) 

D I = C + 

The transformed collision operator is given by 

! 

(6.40) 
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and with the use of the relation 

: 

one can verify the properties of the collision operator derived in 

the formalism. 

(- [ ~) is a real, star-hermitian and ad~oint s~ymmetrical 

operator, and its even part in L is hermitian and definitely positive 

In order to have all the elements of the tranformation, one should 

also study the correlation subspaces. This can easily be done follow. 

ing the procedure used forwysubspace and using proper analytic 

continuation. The details can be found in [29] . The A transform- 

ation which defin~the physical representation is given by 

/k = cX (6.~) 

The most important property of this transformation is its star 

unitarity. This property is quite immediate to verify and in fact 

reduces to the property of unitarity of the S matrix: 

and 

t,. '  

(6.¢¢) 

÷ - =  o (6.45) 
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And from the star unitarity of the AT it is easy to prove the projection 

properties of the~subspaces. Indeed 

"4-I-"= h --- C~'~, D -: C.~ : ~-"IT (6.4-6) 

is nothing else than the completeness relation and 

~_ =- A,, A -~ "7,, ~ ) C  X (6.¢7) 

is easily related to the idempotence and orthogonality relatio~ of the 

-~S • 

A point has still to be emphasised : /k is not a unitary trans- 

formation 

A / S  ~ ,'L ~ A A  (6.48) 

which can be checked immediately on particular examples. The non 

unitary of the A transfermatmon is the property which in fact enables 

us to introduce in a very direct way the concept of cross-sections. 

The physical or causal representation is defined as 

and in this representation the evolution is described by a kinetic 

equation 

with the collision operator given by 

A L t o  
the ~ elements of which are the cross sectio~ given previously. 

If we had taken the factorizable unitary tranformation 

induced by the M611er wave operant 

we should have obtained a vanishing cross section as for the diag- 

onal elements 

as can be verified immediately 
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VII, CONCLUDING REMARKS 

We have shown that for an important class of dynamical systems 

it was possible through a non-canonical transformation to go from a 

Hamiltonian description of dynamics to a description in terms of pro- 

cesses which incorporates explicitly the dissipativity. For this class 

of systems one has two basically different formulations of dynamics 

which can be summarized in the following chart: 

basic 
elements 

collision 

generator 

i ,,. 

description 

mathematica] 
properties 

Space time description 

forces 

J ,  

limiting case of 
dynamical processes 

of motion: 
Hamiltonian 

Space time (world 
lines) "nothing 
begins nothing 
ends" 

Group 

Processes 

cross section 
life-times 

elementary 
Iprocesses 

of evolution: 
c~oss section 
life times 

non local in 
Space time 

Semi group. 

Now there exists systems for which only one of these descriptions 

holds. On one hand, there are simple non-dissipative systems. In 

that case, our transformation leads to the usual static description 

corresponding to non-interacting units obtained by diagonalization. 

On the other hand, chemical kinetics is a good example of a system 

without a Hamiltonian description but where the description in terms 

of elastic and inelastic collisions is the most appropriate. 

Also in high energy problems the existence of a Hamiltonian can 

by no means be considered as granted. 

The epistemological consequences of the existence of this new 

tranformation theory have been discussed elsewhere [30]. Let us only 
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mention here that it gives a precise mathematical meaning to the con- 

cept of complementarity as introduced by Bohr and Rosenfeld. It is 

indeed the description in terms of processes which is essential when we 

want to use a material system as a measurement apparatus as we Want 

then to relate its temporal evolution to the various physical processes 

which are going on in the system. This description is "complementary" 

in the Bohr-Rosenfeld sense to the description in terms of the motions 

of the various particles which form this material system to which it is 

related by our star-unitary transformation. In these lectures we have 

emphasised the physical aspects of our problem: the relation between 

dynamics and irreversibility. It should be obvious that this leads to 

new and fascinating problems in Mathematics. The central part is the 

discussion of possible "equivalencies" between hermitian and dissipative 

operators of motion. This problem is the natural generalisation of the 

problem of equivalencies between hermitian operators which is at the 

core of transformation theory both in classical and quantum mechanics. 
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I . INTRODUCTION 

The real world is extremely complex. Almost everything occurring 

there is a many-body process in which an enormous number of atoms, 

molecules, living cells, individuals etc. are involved. There are 

different levels of observation and description, from the uttermost 

microscopic level on the one extreme to the most macroscopic level 

on the other. The principal aim of physics is to bridge successive 

leveL, completing logical connection from the micro- to the macro- 

level. As is very well known, the microscopic dynamics gradually 

loses its preponderance giving way to the laws of probability as one 

climbs up the staircase, although the conservation laws invariably 

keep their predominant role. It is thus quite understandable that 

macroscopic physical laws can be so general as to apply to a large 

family of physical systems, irrespective of the nature of their con- 

stituent elements. Also a considerable part of the laws of statis- 

tical physics can be applied to non-physical systems, thanks to the 

great generality of logics of probability. 

Shifting the level of observation or description from one to 

another more macroscopic, means a reduction in the number of 

variables describing the system, that is, a coarse-graining of the 

space of state-variables, which is usually accompanied by a coarse- 

graining of time if we are concerned with a process occurring in 

space and time. Eliminated degrees of freedom are not, however, 

totally ignored but they act on the remaining variables as sources 

of noise, imparting therby a stochastic nature to the process pro- 

jected by the coarse-graining. So that we have a hierarchy of sto- 

chastic processes, each member constituting a projection or a con- 

traction of the foregoing one. This means a certain restriction on 

the nature of these stochastic processes. That is to say, we are not 

quite free in choosing a model at a level of this hierarchy, as the 

model should satisfy certain conditions. We are not ready to give 

a complete answer to th~ question of what these conditions really 

are. However at least we kLow ~n example, the Einstein relation, or 

the fluctuation-dissipation theore~ as its generalization. The fluc- 

tuation-dissipation theorem asserts the existence of an internal re- 

lationship between fluctuations and the average behsviour of a sys- 

tem and is well established for systems near equilib=iu=- How far 

this theorem can be generalized to systems far ~rom equilibrium o- 
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to non-physical systems is an open question of great interest. 

Physicists would like, whenever it is possible, to start from the 

first principles, that is from the ultimate microscopic level, and 

working via elaborate many-body theoretical techniques, reach some 

result; the result is more pleasing and more satisfactory if it is 

simple enough to appeal to our physical intuition. Here we shall not 

work that way but will take a phenomenological view focusing our at- 

tention on the process of coarse-graining in the sense mentioned 

above. This is along the line which I myself have been pursuing, but 

I have not completely cleared the way yet, so that the present lectures 

remain as a sort of preliminary approach for a more systematic program. 

II. CLASSICAL BROWNIAN MOTION AND ITS GENERALIZATIONS 

From our viewpoint, the classical theory of Brownian motion 

to statistical physics, is like the theory of ideal gases to the tra- 

ditional statistical mechanics. It is an idealization of the sto- 

chastic processes exhibited by a many-body system when observed by 

means of a small number of projected variables. Here the whole com- 

plexity is represented only by the motion of the Brownian particle, 

on which random forces,due to the thermal motion of the bath molecules, 

are acting. As such a typical example of statistical physics, the 

classical Brownian motion can be treated in several different ways 

affording thus illuminating examples of different approaches to more 

general problems of statistical physics. Also, the idealization makes 

the problem so simple and so transparent that it provides us with a 

standard problem. To this we return for reference when necessary, 

and from this we seek for ways of generalization. 

Let us start from the Langevin equation of motion of s Brownian 

particle of mass m, 

mu = r(t) = -m~u + R(t) (2.1) 

where u is the velocity and F is ~he force at the instant t. 

F is the total resultant of impul~es given to the Brownian particle 

by the surrounding molecules. It is divided into two parts: the 

frictional force, -m~u, a~ the random force R(t). The idealiza- 

tion of ~ classical theory consists in the following assumptions: 

~. the equation of motion is linear in the random source R(t); 

that is to say the friction is proportional to the velocity u 

with the friction constant m~. 
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B. The random force R(t) has a white noise spectrum; that is, 

its correlation time ~¢ is zero. 

C. R(t) is a stationary Gaussian process. 

The assumption A seems the simplest possible assumption adequate 

for 8 Brownian particle, but i% is related, as we shall see later, 

to the assumption B, which is a very natural one if the Brownian 

particle is very much heavier than the bath molecules. The Brownian 

particle would change its state of motion only after experiencing a 

great number of collisions with bath molecules. Namely the time 

scale ZT of the Brownian particle is very much larger than that of 

bath molecules, 

~ " <  ~r (2.2) 

which is idealized to B. The assumption C is also justified by 

the same reason because R($) is then essentially an accumulated 

effect of a large number of more or less uncorrelated collisions for 

which some sort of the central limit theorem of probability theory 

would work. The Gsussian assumption C together with the linearity 

assumption A nicely reproduces the Maxwellian law for the velocity 

distribution in equilibrium. 

These assumptions make the problem well-defined and easily trac- 

table. It should, however, be noticed at the same time that the 

assumption B introduces 8 difficulty. Mathematically this means 

that the process u(t) derived from the basic process by eq. (2.1) 

is everywhere non-differentiable as is very well-known since the 

classical work of Wiener, so that the stochastic equation (2.1) should 

be treated properly with great care. This can be done with the use 

of Wiener integrals and Ito's stochastic differentiation and integra- 

tion procedures [7] • On the other hand, most physicists prefer more 

familiar ways of calculation to such unusual ones. That is, we regard 

8 purely white noise spectrum or a delta-type correlation function as 

a limit of less singular spectra or correlation functions. This should 

be allowed for most purposes, with due caution. Throughout these 

lectures we adopt this attitude. Thus the correlation function of 

R(t) is assumed by B to be 

<R(tl)R(t2)> = 2~I R ~(~tl-t2~) (2.3) 

where I R is the power spectrum of R(t). This is considered as 8 

limit of the Wiener-Khintchin theorem 
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f 
oo 

4 R ( t l ) R ( t 2 ) >  = IR(~)e i  ~ ( t l - t 2 ) d ~  
-oo 

where we may sssume, fo~ example, 

(2.~) 

o r  

1Y l R - I t l - t 2 1 / ¢ c  
4 R ( t l ) ~ ( t 2 ) )  = To e ( 2 . 5 )  

1 (2.6) 
zR( ~ ) = 2~z  R l + ~ 2 ~ c ~  

In the limit of ~c-~O, this becomes a white spectrum and the cor- 

relation function (2.5) is regarded as a delta-function (2.3). 

• he ideal Brownisn motion is like the ideal ~as in statistical 

thermodynamics. We would like to generalize it to less ideal models 

in order to simulate more realistic processes in nature. Assumptions 

A to C may be replaced by: 

A" the observed variable is non-linear in the random force, 

B" the rendom force R(~) is a non-white noise, that is, its cor- 

relation time ~c is finite, no longer very short compared with 

the time scale ~r of the observable, 

C" the random force R(t) is no longer Gaussian. 

Negation of each idealization means an enormous range of possi- 

bility and there ~e innumerable combinations of generalizations. 

Although most of them are in fact beyond our capacity far mathematical 

analys±s, still we can choose some of them as standards useful for 

elucidating the principles of statisticsl physics. 

We shall begin in the following with the classical ideal Brewnian 

motion. We review first several methods of solving eq. (2.1), that 

is of finding the process u(t) as derived from the given underlying 

process R(t). This part will be supplementary to the classical re- 

view article of Wang and Uhlenbeck IS] and will be an introduction 

to the theories of non-ideal Brownian motion, which will be discussed 

in the later lectures° 
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III. RICE'S METHOD (HAm4ONIC ANALYSIS) [ 8] 

Taking the advantage of the linesrity of eq. (2.1), we perform 

harmonic analysis of u(t) and R(t) over a given time interval 

O< t<T as follows: 

i~ t 
u(t) = L U (&~)e n 

n = - ~  

R(t) 
co i~t 

n=-oo 

choosing ~n = 2~n/T with integers n from -m to ~. Equation 

(2.1) then gives 

u<%) = 

which yields at oboe 

for the power spectrum of 

is then 

< u ( t l ) u ( t 2 ) >  = 

l R(~) 

1 IR(~) ~ (3.2) 

u(t). The correlation function of u(t) 

~IR -~Itl-t21 
m--~ e (5.5) 

and in particular 

'I~IR km 

i f  we a s s u m e  

m~kT = I]'1 R = <R(tl)R(tl+t) ) dt 
0 

(5.4) 

<3.5) 

Since 8 linear combination of Gaussian processes is also Gaussian, 

the assumption C imparts 8 Gaussian property to u(t), which assures 

the equilibrium Msxwellian distribution. The assumption B together 

with the fact that eq. (2.1) is first order in the time derivative 

implies the Msrkoffian nature of the process u(t). The Doob 
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theorem ~8] tells us that a Gaussian-Markoffian process ought to 

have sn exponential decay in the correlation function as in fact is 

shown by eq. (3.3). 

The two-time distribution W2(Ultl, u2t 2) of u(t) is charac- 

terized by the variance ~u(tl)2> = <u(t2)a ) and ~u(tl)u(t2) > . 

The transition probability (or the Green function) P(Ultl I u2t2) 

from u I at t I to u 2 at t 2 is then obtained from the relation 

W2(Ultl , u2t 2) = Wl(Ultl)P(Ultllu2t 2) (3.6) 

where W I is the (equilibrium) one-time distribution function. Thus 

we have 

P(Ultll u2t 2) = 
-~ _2~- ( t2_t l )  -~  ) 

 u2_u I e- (t2-tl)} 2 ]. 
exp [ -  m 

2k'm -2~'( t 2 - t  1 ) 
1-e 

(3.7) 

Since u(t) is Gaussian and Markoffisn this completes the solution 

of Eq. (2.1). 
The transition probability (5.7) is the fundamental solution of 

the Fokker-Planck equation 

+ 

with the diffusion constant D u 

~km ~Z~ 
Du - m ~ " 

m 

in the velocity space defined by 

(3.9) 

IV. DIRECT INTEGRATION AND PATH INTEGRAL REPRESENTATION 

Interpreting eq. (2.1) as an ordinary differential equation 

satisfied by an arbitrary sample of the stochastic process in ques- 

tion, we integrate this equation in the usual way. The solution is 
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-~(t-t o) 
u(t) = u(t0)e i 

t 

+ dt'e -~(t-t" )R(t" )/m t > t O 
t o 

(4.11 

if the initial value of u is given ss u(t0). 

of u(t) over the whole ensemble of samples we obtain 

Taking the average 

-~(t-t o) 
<u(t)> = U(to)e (4.21 

t 

dtl I dt2e-~(t-tl)-~(t-t2)<R~r'%R(r~%>~a 

t o 

and 

<(u(t)- Uoe'l~(t-to))2> = I t 

t o 

which becomes with the use of eq. (2.3) 

VI R -2~(t-t0) ) 
<(u(t)-(u(t)> )22 = m--~ (l-e (4.5) 

if the initial distribution of u is sharp. 

As mentioned earlier, u(t) in eq. (4.1) is linear in R(t') 

(to< t',t) so that it is Gaussian, and its probability distribution 

is characterized by <u(t)> and<(u(t) -(u(t)>)2~ as given by eqs. 

(4.2) and (4.31. It is the transition probability P(uotoIut) , eq. 

( 3 . 7 ) .  
One comment seems appropriate at this point. The present method 

has an advantage over Rice~s method; namely that it is applicable 

even when the derived process does not have 8 power spectrum of finite 

intensity. If ~ in eq. (2.1) is zero, the power spectrum (3.2) 

ceases to exist and then Rice's method is useless. Consider the pure 

Wiener process of diffusion 

x = u ( t )  (4.41 

where the velocity u(t) (which here replaces R(tl in eq. (2.11) 

is a pure white noise. Equations (4.2) and (4.31 now read ms 

< x ( t ) >  = x ( t  o )  = x o 

(x(t)-Xo)2> = 2Wlu(t-t o) 

where I u is the power intensity of the white noise u(t). Defining 
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the diffusion constant by 

D = ~I u (a.5) 

we get 

P(xotoIxt) = pWo(t-to)]-  
(x-x0)2 

exp [ .... a D ( t _ t o )  ] 
(4.6) 

Should Rice's method be used, the same result can be obtained by tak- 

ing the limit of ~-~0 and writing x for u and D for 2kT~/m in 

the final result Eq. (3.7). 

In Eq. (~.4) the velocity u(t) should more properly be considered 

as the random process driven by a random force, namely by Eq. (2.1), 

o 

m~ =-mlx + R(t) (~.7) 

Rice's method cannot be used directly for solving this equation (it 

can be used if the particle is'harmonically bound to the origin, and 

the Brewnian motion can be treated as the limit of a vanishing elastic 

force). But Eq. (4.1) can be again integrated to 

x ( t ) - x ( t  o) t dt [tIdtoe- (tl-t2)R(t2)/m- 
= 6 Jt o IJt ° 

(4.s) 

Since x(t) is linear in R(t') (to<t<t) , the process x(t) is Gaussian 

so that its average and variance define the distribution. The second 

term on the r.h.s, of Eq. (4.8) is written as 

~( t l_ t  2 = I t  d{  1 -e -~( t - t ' )  ct et R(t') 
dt 2 dt~e- )R(t2)/m 

]t o It 2 ± .to ~ m J' 

I f  t he  e q u i l i b r i u m  i s  assumed f o r  the  i n i t i a l  d i s t r i b u t i o n  of  u0,  t he  

a v e r a g e  d i s p l a c e m e n t  v a n i s h e s  and t he  v a r i a n c e  of  d i s p l a c e m e n t  in  the  

t ime i n t e r v a l  ( t 0 , t )  i s  e a s i l y  c a l c u l a t e d  w i t h  the  use  o f  E~s.  ( 2 . 3 )  

and ( 3 . 4 )  to  be 

<(x( t )_X(to ))2> = {u2>[t_to_~{l_e-~t-to)~] 
which gives the transition probability 

(~.9) 
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P(O,O~ xt) = [~WD{t- (l-e-lft)/~] -I/2 

X x 

exp [- 4D{t_(l_e_~t)/T} 
] 

(~.io) 

where the diffusion constant is defined by 

D <u2~ kT (Einstein relation) my 
(~.ii) 

It should be noticed that the transition probability (~.10) does not 

satisfy the Chapman-Kolomogorov equation, which means that the process 

x(t) is non-Markoffian. This is because Eq. (4.7) is not first order 

but second order in the time-derivatives of x. If we consider the 

variables x and u together, the Brownian motion in phase space is a 

two-dimensional Markoffian process, but the projection onto the dis- 

placement-coordinate is not by itself Markoffian. It is, however, 

very important to recognize the fact that it recovers a Markoffian 

nature if the space and time are coarse-grained. Namely, if the 

time t is much longer than the correlation time~ c of velocity U, that 

is, t>~c=l/~, the terms, exp(-~t), may safely be ignored in Eq.($.10). 

Then this is reduced to the expression (4°6), which is of course the 

fundamental solution of the diffusion equation 

be ~2 ~--f = D ~ P. 

(~.12) 

The coarse-graining in space is also implied here because we have to 

sacrifice a more detailed description of the probabilities of small 

displacements over the distance of the mean free path; 

ax)> ~ = <u2>i/2~ c 

Another method of direct integration is worth noting here. The 

probability of realizing a sample path of u(t) as determined by Eq.(2.1) 

or Eq. (4.1) is equal to that of realizing a path of R(t). Choosing 

tj = t o + jar (j = 1,2, ... n, t n ~ t), we ask for the probability 

P(R1,R 2 ... Rn) of realizing R(t) as R 1 at tl, R 2 at t2, ..., and R n 

at t n = t. Because R(t) is Gaussian and white-noise, this is easily 
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seen to be given by 

n 

" - - ,  + - - . "  

(¢.13) 

by calculating the characteristic function of P as 

QT{~ I . . .  ~n ) = <exp i ( ~ i R  1 + . . .  + ~nRn ) 
n n 

1 d t  I dr2 ~ ( t l )  ~ ( t 2 ) ~ R ( t l ) R ( t 2 )  > ) exp - 2 ( a t )  '2 

tO 0 

= exp[- </7) 2 it ~(~,)2~,. 2~i~ l 
~t 0- 

= exp [ -2 " IR" t  (,2 + ... + ~n 2) ] 

In this calculation we assumed a very large n. The exponent on the 

r.h.s, of Eq. (4.13) becomesjwith the use of Eq. (3.9), 

I l I t (d(s) + ~u(s))2ds i t ~ 2 ( t , ) d t "  -- - ~ to 
- ~ R  t o 

(~.l~) 

in this limit. 

pressed as 

~Cuo~o,u~ I~L~] o~r z ~ ,  ~} 
l~t 0 

Thus, the transition probability (5.7) can be ex- 

with the Langrangian 

l = - ~ (u(s) +~u(s)) 2 
u 

m (u(s) +~u(sl 2 = _ 

(4.L5) 

(~.16) 

where the paths {u(s)} cover all possible pa±hs with U(to) = u 0 and 

u(t) = u, for each of w~ich the action integral gives the weight. 
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(The measure of paths is defined by Eq. (4.13~. The path integral 

formula for the case ~= 0 was first obtained by Wiener, so that path 

integrals of this sort may be called Wiener integrals. The corresp- 

onding path integral expression for quantal systems is quite analogous 

to this, but it is called the Feynman integral. 

Onsager and Machlup [9] formulated their fluctuation theory as a 

classical Brownian motion and used the same expression as Eq. (4.15). 

STOCHASTIC LIOUVILLE EQUATION 

The Langevin equation (2.1) determines a sample path u(t) for 

each given sample of R(t). We consider now an ensemble of Brownian 

particles at each time point and denote the density of representative 

points in u at time t by a distribution function f(u,t). This sat- 

isfies the Liouville equation 

f(u,t) ~ ' ~-~ = - ~ uf 
(5.1) 

or 

by Eq. 

as 

f (u , t )  = %-~ (~u-  [R(t)f 

(5.2) 

(2.1). The Lionville equation may be written more concisely 

~f 

(5.3) 

where.~(t) denotes the "Liouville" operator on the r.h.s, of Eq. (5.27 

Since the random force R(t) is a stochastic process, the operator~ is 

also stochastic. In this sense Eq. (5.27 or (5.3) will be called a 

stochastic Liouville equation, which is a Schroedinger picture corres- 

ponding to the Heisenberg picture in the Langevin equation of motion. 

A formal solution of Eq. (5.3) can be written as 

t /] (t')dt' ]. f(u,t o) f ( u , t )  : [exp ~t 0 

(5.~) 

for a given sample of R(t). In particular if the initial ensemble 
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is given by 

f ( u , t  o) = J'(U_Uo) 
(5.5) 

f(u,t) is also a delta-function, ~(u-u(t)), the final point being 

determined by Eq. (1.2) for a given sample of R(t). Taking the 

average of f over all possible samples we then obtain the transition 

probability, 

P(uotoJUt) = ~ f ( u , t )  > 

= (u~<exp it [~(t, )d~ >lUo ) 
Jt 0 

(5.6) 

where the bracket notation, like that of Dirac's, means the kernel of 

the integral representation of the operator inside. Generally, the 

operator~(t) may not be commutable for different times and the co- 

responding exponential operator should be interpreted as an ordered 

exponential. However this precaution is not needed for Eq. (5.2) 

and the average of the exponential operator in Eq. (5.6) is easily 

obtained by using the eumulant theorem noticing that cumulants higher 

than of the second order identically vanish for a Gaussian process; 

P(uotolut) 

expl I t dt ~[u + I [ dtl t t  [ dt2 ]2 <R(tl)R(t2)>],$(U_Uo ) 
to 1 7m 2 ° ° Z2 

~2 
+ Out]  -uo  

(5.7) 

where 
~< ~ I R 

D = m- ~I R(tl)R(t I + t)~ dt = m~ 

o (5.s) 
is the diffusion coefficient in the velocity space. Equation (5.7) 

means that the transition probability P(uoto~u,t) is the fundamental 

solution (Green function) of Eq. (3.8). The relation (3.9) ensures 

that the equilibrium distribution Pe satisfying the equation 

= 0 (~u + D u ~'-~) Pe 
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is Maxwellian with the temperature T. 

It should be noticed that Eq. (3.8) is the Fokker-Planck equation 

for the process u(t). The Markoffian property comes from the white 

noise assumption B for R(t). The Fokker-Planck property, that is the 

diffusion-type nature of the process, is due to the Gaussian assumption 

C. A simpler example is the process (%.%), for which the same proced- 

ure immediately leads to the diffusion equation (%.12). Another ex- 

ample is a Brownian motion in a potential field V(x), for which we 

write the Langevin equation, 

~x I )v i R(t) u :-¥~-~u +¥ 

(5.9) 

ind the stochastic Lieuville equation, 

~f(x,u,t) -- [-~u ~(I ]V+~u ~R(t))]f(x,u,t) 
+TUN Y~ - 

The corresponding Fokker-Planck equation is the Kramers equation 

: + + %)u-- ]P(x,u,t)  P(x,u,t) 
(5.1o) 

VI. RETARDED FRICTION, FLUCTUATION-DISSIPATION THEOREMS [4,5] 

Now we turn to non-ideal Brownian motions. The first thing we 

should do seems to be to remove the restriction B, the white noise 

assumption for the random force, because a frequency-dependent impedence 

is quite common in nature, which, as we shall soon see, is inseparably 

related to a non-white noise. 

Consider the response of a Brownian system to an external force. 

The Langevin equation (2.1) may be replaced by 

mu = - m[u + R(t) + K(t) 

(6.1) 

in the presence of an external driving force K(t). If K is periodic 

with a frequency ~, the response will be on the average 
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<u(t)> = Re .~[~]K 0 e iWt 

(6.2) 

with 
I 

i~ +~ 
(6.5) 

which is the mobility, or more generally the admittance, of the Brownian 

system. In many cases, the admittance is not so simple but can be a 

more complex function of ~. Thus it should be generalized to 

I I 
#[w] = ~ ,  i~ +' ~(~) 

(6.¢) 

with a frequency-dependent friction. Such examples are found in 

many mechanical as well as electrical systems, e.g., for a Brownian 

particle, if its mass is no longer much larger than that of a bath 

molecule, the condition (2.2) will not hold and the assumption B has 

to be discarded. This leads to a retarded friction, or a friction 

with a memory effect, in the Langevin equation. Thus we write 

: - m It~(t-t ;) u(t')dE + R~(t) + K(t) m~ 

-~ (6.5) 

instead of Eq. (6.1). The average response~u(t)~ to a periodic K 

is of the form Eq. (6.2), with ~[~]given by Eq. (6.~) in which the 

friction ~[~] is defined as the Fourier-L~place transform of the ret- 

arded friction kernel, i.e. 

~[~] = ~(t)e-i~dt 

o (6.6) 

Being a friction in the Brownian motion, ~[~] may be assumed to sat- 

isfy the following conditions[6]; 

i) Re ~[~] > 0 (6.7) 

ii) lim I[~I = finite < o0 (6.8) 

We consider the Brownian motion in the absence of the external 
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field (K = 0). If it is aged in a bath at an equilibrium temperature 

• , it should obey the fluctuation-dissipation theorem (F-D theorem), 

which can be expressed in the following two forms 

(i) ~[~] = ~[jdt<u(tO)u(to+~ ) e -im~t (6.9) 

(ii) ~[w] = ~[jdt<R~(to)R~(to+t)>e -iWt (6.10) 

These may be called the first and the second F-D theorems. Since Eq. 

(6.5) (with K=O) is linear, Rice's method can be used to obtain the 

power spectrum of u as 

l IR(~) 

(6.11) 

The relation (6.10) gives 

i1{(~ ) m k T Re~(O;) 

(6.12) 
by the Wiener-Khintehin Theorem, which gives in turn 

@Q.m 
$% 

kT I I I ) eimtd~ <U(to)U(to+t)> : ~ .( i~ +~(~) + -i~ + ~c~) 

17o 

As the function (-i~ + ~(~ )-I does not have any pole in the upper 

half plane of complex ~)because of the condition (6.?) so that the 

integral reduces to the latter expression. In particular, this is 

evaluated for t = 0 + by the residue around &O =~with the use of (6.8) 

as 

lira <n(t )u(t + t)> = <u 2) = kT/m 
t ~ O  ÷ 0 0 

(6.1~) 

which is the equipartition law. If ~(t) is assumed to be Gaussian, 

this assures the equilibrium Maxwellian distribution of u. Equation 

(6.13) means also the relation (6.9) for the response to an external 

force. 

• hus we see that the Langevin equation (6.5) with the condition 

(6.7) and (6.8) does properly represent a generalized Brewnian motion 

of a light particle as long as non-linear effects are still disregarded 
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Equation (6.13) implies that this may as well be represented by 

]~o~,(t_~, m ~ ( t )  -m ) u ( t ' ) d t  + R ( t )  , t > t o 
(6.15) 

for K=0. The process u(t) is stationary in the sense that the in- 

itial time t O is chosen arbitrarily. The random force R(t) is not 

quite the same as R(t) in Eq. (6.5) but should satisfy the conditions 

< U(to)R(t)> = o t >t o 

(6.16) 

and 

<R(tO)R(tO+t)> = <R(tl)R(tl+t) > : mk~(t) 
(6.17) 

With Eq. (6.16), we obtain from Eq. (6.15) 

it ~(t - t') <U(to)U(to+t'Ddt" <u(t°)](t°+t)> =- o 

which is Laplace-transformed to result in 

I (t0)u (t0+t)~ e-~tdt ~u2~ ~u = i~ + ~[~] 
O (6.18) 

or equivalently in Eq. (6.13). The correlation function of R,(6.17) 

is calculated from Eq. (6.15) using (6.16) and (6.18). 

The first F-D theorem reduces to the Einstein relation (~.II) 

for the classical Brownian motion at zero-frequency (Eqs. (3.3), (3.4) 

and (6.3)). The second F-D theorem corresponds to the Nyquist theorem 

of thermal noise and generalizes the relation (3.5). The linear 

response theory provides us with a general proof of the F-D theorem 

from a statistical-mechanical viewpoint. The diffusion constant D 

can be defined by 

D : lim((x(t) - x(O))2>/2t 

= lim _~ (u(tl)u(t2)> 

= I <U(to)U(to + t)>dt 
6 (6.19) 
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With Eqs. (3-3) and (3.4) this gives the Einstein relation (4.11) or 

(6.20) 

for a classical Brownian particle. Thus the first ~-D theorem is 

regarded as a generalization of the Einstein relation. The second 

F-D theorem corresponds to the Nyquist theorem and generalizes the 

relation (3.5). 

The linear response theory [II, 12] proves the first F-D theorem 

on the basis of statistical mechanics and gives the second F-D theorem 

as a collorary. In this sense the generalized T angevin equation 

(6.5) can be regarded as a stochastic representation of the linear 

response theory. To this point we shall come back later to discuss 

the problem from a damping-theoretical point of view as developed by 

Mori. We emphasize here that the white noise assumption B in the 

classical theory is thus necessarily related to a friction without 

retardation. It is thus logical to regard it as a limit ~c-~0 such 

as that in ~q. (2.5). 

~he above treatment can be generalized to Brownian motions with 

more than one variable. A generalized Langevin equation may be written 

in the form 

Ito ~(t) = i~IX- (t-tt)X (t')dt' + R(t) ~ t~t 0 
t 

(6.21) 

where X, is a column vector with components XI, ...Xn, /la constant 

retardation and R is the random force. If an external force is 

present, this should be added on the r.h.s.. If the system is quantal 

rather than classical, the definition of correlation functions should 

be generalized to the canonical correlations [5jlO], which are defined, 

for example, 

1 Id e ~ < A(tl);B(t2)>= ~ ; ~ ~!r~e A(tl)e -~ B(t2) 

(6.22) 
where 

= 

is the equilibrium canonical density matrix with the Hamiltonian ~ at 
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a temperature T=i/k@ and A(t) and B(t) are the Heisenberg operators 

corresponding to the relevant quantities A and B. The canonical 

correlations have the proper symmetry and positive definiteness. For 

the vectors X and R in Eq. (6.21) the corresponding row vectors X and 

are defined and the variables are normalized for convenience as 

< x~(t); x~(t))= ~',ik 

o r  

(x(t); 2 ( t ) >  = 1 

(e.23) 

and 

i~.= ~(t); ~(t)> = - (x(t): ~(t)> 
(6.2~) 

The random force is assumed to satisfy the conditions 

~R(t)~ = 0 and <R(t); ~(t0) ~ = 0 (t > t o) 

(6.25) 

The F-D theorems are now written as 

4X(t)> = Re ~[~o eiu~t 

A (~o) = ~(X( to+t )  ; 7 ( to )>e -~ td t  

1 
= i(6)-Jl) + p(w) 

o 

(6.26) 

( 6 . 2 7 )  

(6.28) 

The simplest example is the Brownian motion of a harmonic osc- 

illator for which X is composed of the coordinate x and the momentum 

p. A more complex example is a linearized Boltzmann equation for 

the one-particle distribution function fl(P,X) generalized to the 

form 
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f t 
~'~ fl (p'x't) = iiof I - r( pxt lp 'x ' t~  f l ( P ' , ~ ' , t '  )d{ + R 

(6.29) 

where i~of I_ is the drift term and - ~ is the linearized collision 

operator. The noise R is regarded as the source of fluctuation of 

fl around its average and should be related to the collision operator 

- ~ if Eq. (6.29) describes a system near thermal equilibrium. 

The generalized Langevin equation (6.21) or (6.15) is sometimes 

called the Mori formalism [13] , which derives this form from the 

basic Liouville equation by a damping-theoretical (projection operator) 

method, We shall come back to this later. 

It should also be noted, that the generalized Langevin equation 

discussed here does not necessarily assume a Gaussian property of the 

random force. It is considered as a representation of fluctuations 

near thermal equilibrium and it correctly describes the correlation 

functions. More information is obtained only when the stochastic 

nature of the random force is defined precisely: This means at the 

same time that the Langevin equation has a great generality. 

VII. FORCE CORRELATIONS [5] 

In Eq. (6.5) or (6.15) the force from bath molecules is divided 

into the systematic and the random part. The correlation function 

of the total force 

F = mu 

(7.1) 

is easily found from (6.18). 

is given by 

1 <F(to+t) F(to)) gi~tdt} Yt [~] = i~ + ~[~ 
o 

In its Fourier-Laplace transform it 

(7.2) 

which is written as 

~'~w] -- iw- yt[~] ' or ~,tt~] - ~[~] = iw (7.}) 
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Correspondingly, if we write ~q. (6.21) as 

~ ( t )  = i~X + F ( t )  
(?.a) 

Eq. (7.2) is generalized to 

i fF(t o + t); T(to)) e-i~tdt ~ Ft(~ = P 

or equivalently 

I 
i C~-~%) + i(~,-~) 

(7.5) 

fit[~] : i(~-A) i(w-~.) + r~) 

(7.6) 

and Eq. (7.3) to 

I i 1 

(?.?) 

Equation (7.2) means [t[0]= 0 or 

I <F(t + t); F ( t 0 ) ) d t  = O 

o (7.s) 

namely that the time integral of the total force over an infinite 

t ime i n t e r v a l  should i d e n t i c a l l y  van i sh ,  in c o n t r a s t  to  

I<R(t +t); R(to)> dt = mkT~[O] / 0 
@ 

(?.9) 

More generally, if the system has proper frequencies, the power spec- 

trum of the force F vanishes at these frequencies as is seen by Eq. 

(7.5). For the example of a harmonic oscillator, Eq. (7.5) reduces to 

1 I<F(to t) E(to) ~ e-i~tdt = (~0 2 _ ~2)y[~] 

O 

(7.1o) 
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Another simple example may be instructive in order to see the 

difference of F(t) and R(t). A light Brownian particle is supposed 

to experience elastic collisions with very heavy scatterers, randomly 

distributed in space. A simple model of this random motion is usually 

described by the transport equation, 

I f(u,t) + I [ ~  (u' ,u) f(u', t)du' ~-T f ( u , t )  = - ~ T 

(7.11) 

for the velocity distribution function f(u,t). The second term on 

the r.h.s, represents transitions in the velocity, ~ being the scatt- 

ering probabilities at each collision. The velocity correlation 

function is easily calculated for this model to yield 

~u~ 
<u(t o + t) U(to)> = ~ I 

(7.12) 

where 

~ =  ~ ( i - ~ . ) ,  ~ =  cos'e 

(7.13) 

6 being the deflection angle in each collision. In this model the 

duration time ~c of collision is assumed to be infinitesimally short 

in comparison with the mean free time~ so that the random force R(t) 

is a sequence of irregular pulses forming a white noise, but generally 

non-Gaussian. The real force F is also such a sequence of pulses, 

which however are correlated. If ~0 ~i ~2 ..... is a sequence of 

the momentum values, 

i tj+o = ]fJ-  1 (t)dt 
tj-O 

is the impulse given by the j-th collision occuring at time t 
J. 

Then we have 

I~ " - iwtn~ ~t~ ~°]~ F(t') e -iWt dt I= e -icOtlA~ I + ... + e ~'n 

(7.I~) 
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if n collisions take place in the time interval (O,t). 

ation function of ~(t) can be obtained from the formula, 

I (Ft[~]~-t[-~l> e-Stdt 

The correl- 

e-St{ e-i~b(F(to+t)~(to) ) + ei~b#~(to~(to+t)~ 
(7.1~) 

The successive impulses are in fact correlated as one finds by 

( Al f l  2> :~'1~I - "~0 )2> = 2<IP~) (i-,~) 

< ~ f j  ~ h  '~ = <c 9 -~' j_l)(~' l  -~0 )> 
= _ {1~}~J-2 (i_~) 2 j~2 

(7.16) 

so that one gets 

<F ( t  o 
O 

i~ + t )  ~ ( to)  > e- i~bdt  = 41@~> +~ 

corresponding to 

< F ( t  0 + t ) ~ ( t o )  > = ~<fm>{ 2 [ ( t )  - ~e-~l t l  t 

(? . l? )  

(7.18) 

whereas 

<~(t o + t) ~(to)~ 

(7.19) 

This shows that the correlation effects a negative tail to cancel 

out the integration over the initial time interval of the order Tc" 

In other words the friction formula (7-9) may be approximated by 
4r" 

(?.2o~ @ 
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if a suitable time ~s (~o <~<~) can be so chosen that the integral 

attains a plateau. This is the well-known Kirkwood assumption and 

Eq. (7.20) was his formula for the friction coefficient of a Brownian 

particle [14]. It should be kept in mind that this approximation 

essentially means a nearly white noise of the random force and fails 

badly if a non-white behaviour is dominant. 

VIII. SOME EXAMPLES 

As an interesting example of the foregoing treatment, we shall 

consider first of all Brownian fluctuations of the electric polar- 

ization of a spherical particle of a metal ~15~. It consists of 

fr~e electrons in the background medium with a dielectric constant 

~0" If uniform electric field~ 0 with a frequency ~ is applied a 

from outside, which is vacuum, the electric field inside the particle 

will be 

l / 

:Eo÷ IE 
(8.1) 

where 

t 

(8.2) 

is the applied field modified by the dielectric constant GO and 

E o ~ 

(8.3) 

is the field produced by electronic charges 

~ig. i .  
~ccumulated on the surfa=e~ which correspond to a uniform polarization 

p . The total electric moment of the sphere is 
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where/i:Awa3/3 is the volume of the particle with radius a. The 

applied field interacts with the particle and the energy of interaction 

is 

$ / 

-  'eo 

(8.5) 

We consider such a uniform polarization in a given direction and its 

Brownian fluctuation. The current J associated with the polarization 

is defined by 

~(t) = J(t) 
( 8 . 6 )  

The current responding to an external periodic field is written as 

< J(t) > = R~ ~.e L~IEj e i~t 

= R~ 0"e[~] 3 Eo ei~t 
6o~2 (8.7) 

The linear response theory gives the admittance coefficient ~e~wj 

as 

~.e[~ = ~ Id t e-iOt<j(O);J(t)>/~ 
° ( 8 . 8 )  

where the current correlation function represents the Brownian fluc- 

tuation in the absence of external forces. 

We observe now that the Brownian current (8.6) consists of two 

parts~ the systematic and the random currents. The former is the 
/ 

current induced by the self-field E caused by the polarization. 

This may be expressed as 

Js(t) :Z- ~(t-t')~'(t')~t 
0 

= _ },t ~@(t-#)M(t" )d# (8.9) 
0 

where,(t) is the retarded kernel of the complex conductivity 0-[~ 

and ~ is given by 



99 

r 
~(~) =]~(t)e'i~tdt = ~[~] 

~o + 2  

as is seen from Eqs. (8.3) and (8.4). 

l 
M(t) = Js(t) + J (t) 

(8.1o) 

Equa t i on  ( 8 . 6 )  i s  w r i t t e n  a.s 

(8.1l) 

and is regarded as the Langevin equation for the Brownian motion. 

The second F-D theorem (6.10) gives 

= I £< e-i~tdt J'(t)J'(O) 

(8.12) 

Now remember that the Debye-Kirkwood-Fr~hlich formula [16]for static 

susceptibility is 

(8.1}) 

(which is the static limit of the first F-D theorem [I~). If E 0 
i 

is static, the self-field E I should cancel E 0 to make ~ equal to 

zero in Eq,(8,1); that is to say 

~<M;M> - n(Eo+2) 

Therefore Eq. (8.12) gives 

~-[~] : 0 e -i~ <J (t);J (O))IA]_ 
o 

(S.l~) 

which is the well known conductivity formula. Note that the random 

current JI(t) is not exactly equal to the actual current in the metal 

lic particle; the self-field is ignored in the random force driving 
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the current. The conductivity f[~, is the intrinsic conductivity of 

the metal, whereas ~w] , Eq.(8.8) is extrinsic and vanishes for zero 

frequency as it should be. These two are related to each other by 

the general formula Eq. (7.3). 

Equation (8.14) can be transformed into 

¢[~ = ~2_ 1 " ~ e-i~t J'(t) ~'(o)>Im_ f~ ~'2 -dt < ; 
0 

(8.15) 

by partially integrating twice. Here Up is the plasma frequency [17]. 

This expresses the conductivity in terms of the force correlation 

(not including the self-field). This formula is particularly useful 

for computing optical or high-frequency response of conduction electrons 

because the force comes from electron-phonon, electron-impurity, or 

boundary scattering and these interactions can be treated by straight- 

forward perturbations. 

We can of course treat an infinite system of particles. Assum- 

ing that it is spatially uniform, fluctuations and responses are 

Fourier-analysed. For example, consider the k-component of density 

nk(t) and write the equation of continuity as 

• - .S . I nk(t) ih~k(t) lk~k(t) . . . . .  • k j k ( t )  

(s.16) 

where ~k stands for the total current which is composed of the system- 

atic part and the random part. The systematic current ~ driven by 

the self-field produced by the density fluctuations. In order to see 

what the self-field should be, consider a spring at an elongation Ax, 

under an external force F, which is balanced with the elastic force, 

-~Ax. In the same way, if the density response to an external pot- 

ential@~ is defined by 
IK 

(8.17) 

the self-field¢~ is defined by 

¢{ = nk/Zgk,O]. (S.18) 
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In the presence of an external potential @e k' the effective local field 

@e and the averaged self-field; namely is the resultant of k 

eke(t) = ¢~(t) + -~[~~nk(t) > =~(t) - ~ ~k (t) 

or 

= 1 

with the shielding factor [[k,~] defined by 

(8.19) 

(8.2o) 

The current response can be written in two ways, as 

= Re ~[k,~] i~ ~k (8.2l) 

in terms of the external (extrinsic) mobility~ e or of the local 

(intrinsic) mobility ~. These two mobilities are related to each 

other by 

[ [ k ,~ ]  
(8.22) 

.s in Eq. (8.16) is given by Now we see that the systematic current Jk 

(8.23) 

or 

• .S ~ ~t t • s 

-Zk~k(t) = - I ~k(t-t ) nk(t)dt 
0 

(8.24) 
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with ~k(t) corresponding to the Fourier-Laplace image 

Yk [~] = %[~,o]  

(8.2b) 

considering Eq. (8.18). Equation (8.16) is a generalized Langevin 
.J 

equation of the same form as Eq. (6.1~), provided that Jk is in fact 

random satisfying the condition (6.16). The density correlation 

function is obtained from this equation giving 

A[k,~] ~t e-i~t(nk(t); n_k(O)> 

(nk(O) ;  n-k(O)) Z[k,O] 1 
i~ + %kiwi # iw +~k[~] 

(8.26) 

The linear response theory gives 

~[k,~] = Idt e-i~(n_k(O), nk(t)]> 

(8.27) 

as an F-D theorem, which reduces to 

~[k,O] :l~<n~(O); n_~(O)> 

(8.28) 

for the static susceptibility. This last relation is used in Eq. 

(8.26). In Eq. (8.27) the round bracket means Poisson (quantal or 

classical) bracket. 

The F-D theorems can also be written here as 

~e[k,~] : ~ ; t  e-i~t<jk(t); <k(O)> 
Q 

(8.29) 

and 

(8.30)  
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The continuity equation (8.16) means that 

i~ X[k,~ - ~eCk,~] ~ = 0 

Equation (7.2) is now written as 

(8.31) 

)lle [k, (w] = 21 [k ~ (a] 

i o] (8.32) 

which is inverted into 

I- [ 
i o] 

(8.33) 

The last equation is identical with (8.22) by the relation (8.31). 

Equations (8.32) and (8.33) obviously correspond to Eqs. (7.2) and 

(7.3)~ With the use of Eqs. (8.31) and (8.32), the shielding factor 

£[k,~] is expressed as 

~[~,w] = i+ ~-~ l+ ~Z,[~,o ] 

(8.3~) 

This is a useful formula, because the local mobility~may be approx- 

imated in some Simple way. 

If the system consists of a single species of particles and no 

force field is acting to prevent the conservation of total linear 

momentum, the local mobility ~4" in Eq. (8.21) has a pole of first 

order in gO. The corresponding pole of A[k,~ , Eq. (8.26), gives 

the dispersion relation of the longitudinal sound wave. On the 

other hand, if the momentum conservation law does not hold, ~4 ~ remain: 

finite at w=0. Then the pole of A[k,w] gives the diffusive mode. 

The generalized diffusion coefficient may be defined by 

D [k ,~] : ,~ [k ,~J/~[k  ,0] 

(8.35) 
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where the static density susceptibility~,~ satisfies the thermo- 

dynamic relation 

lim ]IC[k,O] = (~"~)T = n2K 
kgO 

(8.3e) 

where ~ is the chemical potential and ~ the isothermal compressibility. 

Equation (8.34) together with (8.35) is a generalization of the Einstein 

relation. Equation (8.18) means that the self-field for small k's can 

be identified with the change of the chemical potential induced by 

density variation. 

For charged particles, the self-field is mainly due to coulomb 

interactions. For small wave numbers~,~-l is dominated by 

~[k,O] -I ~ e2 

(8.57) 

where ~0 is the dielectric constant of the background medium for the 

charged particles. If only this is retained, the shielding factor 

is the dielectric constant. Equation (8.20) shows that I/£ can 

be expressed directly in terms of the density response function (8.27). 

This formula was given by Noziergs and Pines [18]. By Eqs. (8.31) 

and (8.29), the density response functions can be replaced by the 

current correlation function (8.29), and also can be expressed, by 

Eq (8.32) in terms of the correlation function of the random current 

Eq. (8.30). The commonly used RPA (random phase approximation) simply 

replaces this by the curren~ corre!ation of non-interacting particles. 

Then one can easily calculate the static correlations, <n k n_k > by 

inverting the expression (8.26) and the free energy of the interacting 

particles using the equation 

27 F ! | ~_X[/~] 
7 = 

= ~£~j w~ 
@ - -  

(8.38) 

where v k is the k-th Fourier component of the two-particle inter- 

action potential. For the jelly-model of electrons this approxim- 

ation gives the well-known high density approximation first obtained 

by Gellman and Brueckner. Similar procedure is possible for other 



105 

systems, for example, for magnetic systems, and lea~ t o  the RPA results 

There are a number of such examples, although they are often expressed 

in somewhat different contexts. As an interesting example somewhat 

beyond the usual RPA level of approximation, a recent work of Moriya 

and Kawabata [lJ may be worth noting; they treat the problem of 

spin fluctuations and the itinerant electron ferromagnetism. 

IX. SOME COMMEN~S 

Before leaving the subject of retarded frictions, a few points 

may be commented rather briefly. 

i) If a system is described as a Markoffian process by a set 

of stochastic variables, the whole set is said to be complete. If 

we concentrate our attention only on a subset of the variables, the 

process is no longer Markoffian. Such a projection usually recovers 

the Markoffian property by coarse-graining of time scale. This we 

have seen for the example of a Brownian motion (section IV). It 

should be noted, however, that this recovery is not always realizable. 

In some cases, a non-Markoffian nature persists in long time scales. 

Somewhat ironically, a realistic Brownian particle should exhibit 

this singular behaviour. More delicate and complex examples are 

fluctuations of order parameters in the very neighbourhood of a second 

order phase transition. The latter problem is very interesting but 

is beyond the scope of this lecture. 

In the classical theory of Brownian motion, the friction is 

usually assumed to be the Stokes resistance~ namely 

m~u = 6Wa~u~ ~u 

( 9 . l )  
where a is the radius of the Brownian particle and ~[ is the Viscosity 

of the fluid. This is not quite right, because for a non-steady 

motion one should apply the Boussinesq equation 

I ' Irt , , i 

F ( t )  : - ~u(t) ~mou(t) - ~ f ~  dt ( t - t ) - ~  ~ ( t ' )  
"0  

(9.2)  

for the systematic force assuming the fluid incompressible and the 

stick condition at the particle-fluid boundary. Here m 0 = ~a3~o/~ 

is the mass of the fluid displaced by the spherical particle and 
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= ~; a ~  1 / 2  ( ~  = ' ~ / ~ 0  ) 

Equation (9.2) shows that the retarded friction kernel (6.6) is 

m[[~] = ~+ ~ (i~) + ~ moiW 

and that the auto-correlation function (6.13) behaves as 

<U(to)U(to+t))_~ 2 kT (4W~JW)-3/2 
3 ¢o 

(9.5) 

(9.~) 

As was pointed out by Lorentz a long time ago, the ideal Brownian 

motion theory is justified only with the assumption that the density 

inside the particle is far larger than that of the surrounding fluid 

(which is a more strict statement than that the Brownian particle is 

heavy). This is not at all surprising but has attracted much atten- 

tion rather recently since the computer experiment by Alder and Wain- 

right [2 4 showed this explicitly. The F-D theorem ~i~ implies that 

the auto-correlation function of the velocity is equal to the average 

velocity of the Brownian particle after a time t if a unit impulse 

was exercised on it at t=O. The imparted momentum diffuses among 

the fluid molecules within a volume proportional to t 3/2 giving the 

particle an average momentum of the order of t -3/2. 

In this problem, the set of stochastic Variables can be completed, 

besides those of the Brownian particle, by adding the velocity field 

v(r,t) of the fluid. The noise source is present in the fluid as 

a random stress tensor, which is assumed to be white-noise both in 

spatial and temporal Fourier components and to assure the basic Mark- 

offian property of the whole process. The projection onto the Brownian 

particle results in Eq.(9.4). The Bous~&nesq friction is simply de- 

rived from the linearized hydrodynamic equation, but it should be re- 

lated to the random force R(t) on the particle by the F-D theorem. 

An explicit proof of this has recently been given by Hauge and Martin- 

L~f ~l]. 

ii) The electrical conductivity T[~lis given in terms of a 

current correlation function. As we have seen already the consideration 
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of coulomb interaction presents a problem. In Eqs. (8.1%) and (8.30), 

coulomb interactions as the self-field should be eliminated. In fact, 

most practical calculations are carried in that way; usually, electric 

carriers, say electrons, are assumed to be scattered by phonons or 

imperfections. There still remains a difficult problem of renormal- 

ization or dressing of particles and interactions, which has been a 

challenge to a great number of many-body theorists in the past years. 

I shall not go into this problem but will comment on a point which 

seems to have caused some confusion. 

For a system of conduction electrons, Eq.(8.1&) may be written 

as 

4~;~}/~ _ e2n I 

(9.5) 

Here Y/~is the electronic current density, for which the generalized 

equipartition law holds irrespective of interactions and statistics 

2 
< ~ ; ~  = e nkT._[~ 

m 

corresponding to the conductivity sum-rule 

m 

Equation (9.5) gives 

e n 

and in particular 

~[0] = m ~ [0] I 
e n e nkT 

~o <R(t);~(O))dt 

(9.6) 

(9.7) 

(9.8) 

(9.9) 
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where 

R(t) : ['(t) 

(9.10) 

is the random force acting on the electrons. Equation (9.9) is 

often interpreted as a direct expression of the zero-frequency 

resistance in terms of force correlation [22]. It is useful, but 

seems to have been sometimes misunderstood. It is exact as long as 

the random force is properly defined. In the literature the random 

force is often confused with the total force F; namely sometimes it 

is taken as 

R(t)~~(t) ~(t) 1 : 

(9.11) 

where ~ is the total hamiltonian and ~" is the perturbation noncommut- 

able with the current. When this is done, Eq.(9.9) is no longer 

exact although it can be a useful approximation if another dishonesty 

is committed at the same time. This we have seen already in section 

VII for the example of Kirkwood~ equation for resistance (7.20). In 

many cases, one does not even care whether the plateau of the time 

integral really exists, but one carries out the integration over 

infinite times obtaining a useful, realistic answer. The trick is 

the use of lower order perturbational calculation, say the Born-approx- 

imation, which does not give the correct time-dependence of the correl- 

ation function. The effectiveness of this approximation further de- 

pends on another condition, that is a narrow spectrum of relaxation 

frequencies. For example, consider non-degenerate electrons in a 

semiconductor scattered by static impurities. For a group of elect- 

rons with an infinitesimal spread of energy, ~[0] yields, with the 

prescription described in the above, a reasonable approximation for 

the relaxation frequency, or the inverse relaxation time. The con, 

ductivity is determined by the averaged relaxation time, whereas the 

approximation, Eq. (9.9),corresponds to an average of relaxation fre- 

quencies unless the electrons are grouped for different energies,and 

so it can be a bad approximation. On the other hand, the method can 

be much better if the electrons are degenerate. In fact it is a simple 

calculation leading to the Grueneisen formula for a metal[2~ , because 
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the dispersion of relaxation times is rather small. The approximation 

is essentially equivalent to calculating the average relaxation fre- 

quencies from a Boltzmann-Bloch equation, or to using a variational 

solution of this equation, in which the collision kernel is obtained 

by a Born-approximation of electron-phonon scattering processes. The 

same approximation is often useful in the calculation of the effects 

of configurational disorder: say random spins or random distribution 

of atoms or impurities [2#]. But it should be kept in mind that 

such a calculation remains an approximation, that can be good only 

when certain conditions are satisfied. 

iii) The random force in the Langevin equation , eq. (6.15), 

can also be regarded as a random process driven by a noise source 

lying at a more microscopic level. Its Langevin equation may be 

written as (denoting now R as R1) 

-t o 
with the same conditions for the new random force R2(t) , 

namely, 

<R2(t)> = O, <Rl(t o) R2(t)> = 0 • t> t o ° 

Then the correlation function of Rl(t) is given in the form 

2 

(it e -icfc <Rl(t ~t) Rl(to) ) = < R1 > (9.13) 
i~ * Y2 t~] 

where ~2[~] is the Fourier-Laplace image of ~2(t). In the same 

way as for eq. (6.15), the retardation kernel ~2(t)~or its Fourier- 

Laplace image, is related to the random force R2(t) by 

f ] <R2(t~t  ) R2(to) } e - i ~ t d t  (9.1¢) 

Thus the admittance ~[w] , eq. (6.9)~ is now written as 

1 1 
,,r~L~] : m i ~ '  ~ R ~  1 (9.15) 

Repeating this process again, we have an expression of the form 
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#[~] = 

2 
AI 

2 
A~ 

iw "I" ~3[~] 

where ~3[~] 
order random forceR3(t) by 

49.16) 

is related to the correlation function of the third 

: ~ <R3(t~t) R3(to) > e -i~t dt 49.17) 

<R 2 > o 

By repeating the same procedure infinitely many times, we can write 

the expression (9.16) as a continued fraction, which was first 

introduced by Mori [25] and was carefully examined by Dupuis [26] . 

The expression (9.16) has been used often as a theoretical 

approximation for calculating density respouse of liquids, spin 

response of magnetic systems and other things. It has been also used 

as a method of semi-empirical analysis of experimental data of such 

responses obtained by various kinds of spectroscopic experiments 

including inelastic scattering of neutrons. The parameters ~i' ~2' 

etc., are related to the moments of the spectrum, or the time-deriva- 

tives of the corresponding response function (or the correlation 

function), evaluated at time t=O [2, 5, Ii]; for example, 

= m 2 /~2 = [m/$- (m2) 2 ] /m 2 

: / [m Cm  - m )1 o t c .  

! where  t h e  m2n s a r e  even  moments o f  t h e  s p e c t r u m  and a r e  e q u i l i b r i u m  

averages of the squares of higher derivatives of the force acting on 

the mode of our particular interest. Each of the functions ~n[W] 

appearing in the continued fraction is a correlation function of the 

corresponding random force of a certain order, and will satisfy the 

conditions (6.7) 

The simplest use of eq. (9.16) would be to assume ~3[w] to 

be a constant, ~3 over the frequency range of observation. If O~ 

is scaled by A 3 , the r.h.s, of eq. (9.16) depends only on the 

parameters 

a = ~I / A} and b = ~2 / ~3 49.19) 
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besides the scaled frequency ~/ ~3" Another choice often used is 

the assumption~ 

F I dte -i~t - t2 = ( 9 . 2 0 )  

i~ , ~3[~I o 

The essential difference between these two choices is that all the 

moments are convergent for the second one~ whereas the moments higher 

than the 6-th cease to exist for the first one. Nevertheless, general 

features of the spectrum are nearly the same for the two choices. 

Depending on the values of the parameters a and b, eq. <9.19>, the 

spectrum shows one~ two or three peaks. Figs. 2 and 5 are due to a 

recent work of Tomita and Makishima. Fig. 2 corresponds to the 

assumption ~3 = const and Fig. 5 to the assumption of eq. (9.20), 

and I, II~ and III indicate the domains of the parameters where the 

spectrum is singly~ doubly or triply peaked. The peak around ~ = 0 

is often called the central diffusion peak~ and the side peaks are 

associated with damped oscillatory modes [27]. 
As the Brownian variables, one could also choose a set of 

suitable variables and apply eq. (6.21). For many variable cases~ 

the expression (6.27) can be extended to a continued fraction form 

as a matrix. This will be sometimes more useful and more direct in 

the sense that we can select, from the beginning~ some particular 

modes of collective motion, which are in many cases related to con- 

served quantities of the system. On the other hand, a simple con- 

tinued fraction~ of the form (9.16), is expected to work well if the 

introduction of higher order random forces automatically chooses the 

relevant modes. It should also be kept in mind, however~ that a 

formal expansion of an admittance function in a continued fraction 

expression does not necessarily mean that each of the ~,K~ appear- 

ing in the expression is connected with a meaningful physical 

quantity~ it can be only a mathematical convenience. 
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X. DAMPING-THEORETICAL METHOD [28] 

As was stressed in the introduction, shifting the level of 

observation to a more macroscopic level means a reduction in the 

number of variables throwing away the irrelevant ones. A mathematical 

formalism for this reduction has been known for a long time as the 

damping theory. It has been extended greatly in various contexts. In 

this school we have already heard about some of the ambitious, newer 

attempts from Prof. Prigogine. Since our phenom~nological approach 

has to be founded on a more microscopic approach, this formalism is 

very important for our purpose. It is not possible and perhaps un- 

necessary to discuss this here in great detail, but it seems desir- 

able to sketch some aspects rather briefly. 

We consider a Markoffian equation, 

-~ f (ql..,qn,t) = ~f (10.1) 

where the variables (ql...qn)ar e a complete set and P is the evolu- 

tion operator (which can be a Liouville operator i ~ ).Let us divide 

the set into two subsets , 

q' = (ql...qm) , and q" = (qm+l...qn) (10.2) 

and suppose that q" is going to be hidden. The projected process 

consisting of q' is described in terms of a projection 

g : ~f (lO.3) 

where the function g is essentially dependent on the variables q'. 

More explicitly, it will be of the form 

(~f = g (q', q", t) : ~ (q', t) @o (q") (10.4) 

where ~o(q '') is a given function of q" independ~t of t. Thus the 

projection (10.3) will be written as 

g = ~o (q") lfo (q'') d q" f (q', q", t) (10.5) 

where ~^(q") is also a given function satisfying the condition 
iv 
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l&o q'') @o (q") dq" = 1 ( lO.6) 

From eq. (10.5) we have 

(q' , t)  = ]~ro(q") dq" f(q' ,  q", t )  (lO.7) 

and the condition (10.6) guarantees 

for this projection procedure. 

The evolution equation (I0.I) is separated into two equations, 

(io.8) 

(Pf = @ P & v  • @ P Q {  (lO.9) 

qf = qrq f+ qV&f (i0.i0) 
~t 

where 

q = l - ( P  
is also a projection operator. For a given initial condition 

f(q,t ) ~ f = @f + Q f 
0 0 0 ' 

(I0.ii) 

(i0.i2) 

eq. (I0.i0) is integrated to 

t 

qf =~t e(t -  ~)Q~ Q p ~Df(~) d~ @ e(t-to )QP Qfo 
o 

and is inserted into eq. (10.9) to give 

t 

)-Y d~ q 

o 

(I0.i3) 

+ ~re(t-to)QfQ fo (t~to) (10.14) 

This is very well known. The projected process is no longer Markoffian, 

but carries a memory of the initial state through the third term of 

the r.h.s., and it is governed by the retarded (non-Markoffian) 

evolution operator in the second term. Equation (10.14) may written 

in a somewhat more transparent form 

Is er er Q ] F= Ofo+ r  Q fo (lOll) 
s - qf s -qP 
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if the Laplace transform 

f 
(q ~ s) =I e-St f (q' t) dt F 

o 

is introduced. Equation (10.15) is nothing more than what has been 

called the damping theory in quantum mechanics, where @ usually 

means a projection to the diagonal elements in the unperturbed states 

of the system. Very often the initial state f is chosen to make 
o 

Q fo vanish. With such an initial condition eq. (10.1%) or (10.15) 

gives the evolution law of @f or g , eq. (10.%). This will be 

reduced to 

-~-~ : p ~ , (io.16) 

if we replace the r.h.s, of eq. (10.1%) by 

4 @o ? g =~?~f+ @ d~ e (t-~)Qr Q~6)~ , (lO.17) 

assuming that the time t is coarse-grained with a scale ~ ~ which 

is much longer than ~c scaling the rate of decrease of the retard- 

ation kernel in the integrand. 

A simple example of such projection is a Brownian motion, in 

a potential field, eq. (5.13), which is written as 

with 

f (~: ,~ , t )  -- ( f ' o  * F i  ) f  

~o ~--u i -~ ') , 
= ~ (u + m- 7 ~--~ 

= - u-T~ ~ m ~x -~u 

The projection ~, (10.%), is defined by 

@f (x, u, t) = @o (u) du f (x, u, t) 

--(X) 

where @o(U) is the normalized Maxwellian distribution, 

2'IY )-'t~ ~ 2 
Go (u) ( m--F- e~ ( --~-mu ) 

It is easily seen, that from the definitions (10.19) to (10.21), 

(I0.18) 

(I0.19) 

(i0.20) 

(Io.21) 
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FO e= ~rlo = 0 and ~q@ = 0 . (10.22) 

These make the first term on the r.h.s, of eq. (I0.14) vanish and 

reduce ~ , in the second term~ tO ~I" The third term is absent if 

the Maxwellian distribution is initially assumed. The above observation 

simplifies the equation considerably. In order to obtain the familiar 

equation of diffusion in the potential field V, we require the 

conditions 

-~I~ 1 (10.23) 

( .g = {u2>'/~'/ .  6 ) 

which mean that the distribution and the potential are slowly vary- 

ing over distances of the order of the mean free path ~ ~ and that 

the operator ~i can be treated as a perturbation relative to ~o" 

Thus we approximate the operator exp (t-~) qr by exp (t-~) Co to 

obtain @r~// (t-*)ro dT e Q ~ @fo (~) (IO.2A) 

0 

for the integral operator in eq. (i0.I~). But we further notice that 

F 1 3v @~l~ ~ ~o (u~ du( u ~ + ~ ~o(U~ o m ~x 
--CO 

which saves Q in eq. (lO.2g). Noticing that 

CoU@o(U) =- ~ u  @o (u) 

we write the integral operator as 

r E - du (-u + I )V % 
m ~x ~ ) U@o(U) 

--CO 
0 

By integration over u, the term with ~ /9 u on the left vanishes. 

Assuming a slow change of g(~,t) in t, namely 

this finally becomes 

-~ -"YZ'-' ~ (x ,  t )  

d~ e-~(t-~)r~ +n~V~- ~. ~y-~)g (x,t) 

(lO.25) 
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which is the diffusion operator in the presence of the potential V. 

Now the velocity u is hidden and the Brownian motion is observed only 

with respect to the spatial part. The Markoffian property of diffusion 

is recovered by coarse-graining in space and time, provided that the 

potential is sufficiently slowly changing. 

The derivation of the so-called master equation, from a classi- 

cal or quantal Liouville equation, can be made in the same way. The 

operator ~ is now a Liouville operator i ~ , which is divided into 

i ~o a~d i£ I. If the projection @ is proper~y defined to satisfy 

the conditions 

i fop =  iJo = o 

eq. (10.15) takes the form 

s-QiX o 

with the initial condition Q f = O. If the operator Q i~ in the 
o 

denominator on the l.h.s, is simply replaced by i~o ,_ and s is sent 

to O* in the same denominator, this becomes a master equation, in 

which the transition probability is calculated by the golden rule. 

The conditions to justify this approximation are rather well known. 

From my own point of view~ this is very closely related to the 

phenomena of motional narrowing, for which I have no more time in 

these lectures, and refer you to some of my previous articles [3, I0]. 

As was shown by Mori [13], the damping theory can be used to 

give a microscopic basis of the Langevin equation. Instead of applying 

it to a distribution function, we now apply it to dynamical equations. 

For the sake of clarity~ we consider a classical system. A dynamical 

quantity A t is a function of time because it is a phase function, 

namely 

A t = A ( pt, qt ) = A (p,q,t) (10.27) 

In the last expression, (p, q) is the initial phase and (Pt' qt ) is 

its image after time t, as determined by the Hamiltonian equation of 

motion. For At, (iOo27), we can write the equation of motion 

~ A t  ~ - i ~  A t ( l O . 2 8 )  9 t  

wi th  the L i o u v i l l e  operator (note the s ign)°  Now we def ine the 
p r o j e c t i o n  ~ of any phase func t ion  g (p,q)  by 

@g = A (A, g) / (A, A) (10.29) 
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where the bracket is defined by 

(f,g) = ]Jd p d q ~ e- @~(p'q)f (p,q) g (p,q) 

with the normalized canonical distribution Cexp (-~ ~ ). 

Because of the stationary nature of the canonical distribution, we 

have generally 

(g, g) = (g, g) = O, (gt' ht) = (g' h) (10.30) 

The damping formula (10.14) can be applied to eq. (10.28) with the 

projection ~ defined by eq. (10.29). Equations (10.30) give 

@(- iZA) : : o 

6)(-if )g : A (A, ~ )/(A, A) : -A (~,g)/(A, A) (:O.3i) 

The damping equations (I0.13) and (I0.i~) are now written as 

--~ A t = - ~(t-~) A dT + R t ' t~t o (10.32) 

O 

with the random force defined by 

-i(t-to)Qi~ . 
R t = e A , 

and the retarded function 

(lO.33) 

~(t) = (RtR t) / CA, A) . (I0.3~) 

Since ~R t = O, eq. (10.32) projected by ~ gives eq. (i0.1%), or 

equivalently, in this case 

i m (A, A) 
(Arc, Ato4t ) e -i~ tdt - (10.55) 

The part q A t is obtained from eqo (10.32), as a convolution of R t 

and the correlation function (10.35). This is equivalent to eq. 

(:o.i3). 

Equation (I0.32) was first obtained by Mori [13] and is the 

generalized Langevin equation, which we assumed for our phenomenolo- 

gical treatments. Equation (i0.3~) is equivalent to eq. (6.1?),and 

represents an F-D theorem of the second kind. 

It should be noted that the damping-theory is a formalism, which 

allows a very wide range of applicability. For example, if the pro- 

jection is defined so as to project the distribution function of a 
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many-particle system to a product of one-particle distribution 

functions, this formalism can be used for deriving the Boltzmann 

equation. However, a careful examination is required in order to see 

under what conditions the reduced equation can really be used. 

XI. CONCLUDING REMARKS 

Since I have used up my time, I have to finish now. As the 

reader may have noticed, in the introduction, I wished to include in 

these lectures some other points to generalize the Brownian motion 

theory. Let me make a few very brief comments on some of these points 

i) A stochastic equation of motion can be non-linear; for 

example, 

~(t) : v (x> + R (x, t) (ll.l) 

where R(x, t) is a random noise. If it is a white noise, then the 

process x is Markoffian. To derive such a Markoffian equation, it is 

most convenient to use the method of stochastic equation as discussed 

in section V. If, furthermore, R(x, t) is Gaussian~ the Markoffian 

equation is reduced to a Fokker-Planck equation,which is a diffusion- 

type equation. Generally, we do not really require the stationarity 

of the process, so that the drift term and the diffusion term may 

explicitly depend on time. They can also be non-linear functions of 

x . These are two ways of interpreting a stochastic differential 

equation of the type, eq. (ii.i), in the case where R(x, t) has a 

singular nature of this kind. This point was briefly mentioned in the 

introduction~ and the reader is referred to, for example, a paper by 

Mortensen [7] - Further references should also be made to a series 

of papers by Lax [29] . 

As is very well known, extensive work has been done on applica- 

tions of Brownian motion theory to laser problems, that is to quan- 

tum aspects of Brownian motion of laser modes coupled with atoms. 

The theory now extends to much wider categories of problems. 

The reader is referred to a review paper by H. Haken [30] . 

ii) A particularly important example of non-linear Brownian 

systems is an oscillator on which the random noise exerts not only 

amplitude modulations but also frequency modulations. Numerous 
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examples are found in physics, in resonance problems. The concept of 

motional narrowing played a very important role in NMR, ESR and 

other kinds of spectroscopy. From the author's point of view, it 

gives us a very nice example, which helps understand the physical 

and the logical structures of stochastic processes [3] • The narrow- 

ing means that the correlation time of R is very much shorter than 

the relevant time constants of x , and so it means a Markoffian 

character for the process x . Transport equations, such as Boltzmann 

equations, require some sort of narrowing conditions, either as weak 

perturbations or as localized perturbations. Such narrowing conditions 

may not be satisfied in practice. In such cases we have retardation 

effects and memory effects, which can generally be non-linear effects. 

iii) Relatively simple examples of such un-narrowed perturbations 

are stochastic theories of spectral lines. Equation (ll.1) may be 

thought of as a Schr~dinger equation, or a Liouville equation for 

the density matrix, which contains a random perturbation from the 

environment. If the stochastic nature of this perturbation is simple 

enough, the response or relaxation of the system can be explicitly 

treated. An easy case arises if the random perturbation is basically 

Markoffian. Assuming simple but typical types of such perturbations, 

the line shape problem has been discussed by the author [3~ • 

iv) A Gaussian property of a stochastic process is attributed 

to a certain kind of central limit theorem. In this respect, we 

could ask the question of whether a Gaussian nature may in fact be 

proved for macrovariables, which consist af a great number of small 

contributions from a numerous constituent units of the system. I would 

have liked to have time to discuss this problem, but here can only 

refer to our recent work [32] . In thermal equilibrium, the distribu- 

tions of extensive thermodynamic quantities are usually Gaussian, the 

variances being also extensive, except in the very neighborhood of 

a phase transition where the distributions become non-Gaussian, which 

is now very well recognized as being related to the critical singular- 

ities. In non-equilibrium situations, it can be shown that the probabi- 

lity distribution of an extensive variable is generally Gaussian if 

the size of the system is very large, except in the neighborhood of 

a certain critical condition. Such an extensive variable can be 

regarded as a Gaussian process not necessarily stationary. For example, 

large deviations from equilibrium, relaxation from far from equili- 

brium, and response to a large external force, behave, in general, 

non-linearly. The evolution of the average behavior and the fluctua- 

tions may be described by a Fokker-Planck equation, which is 



121 

generalized, in the sense that the coefficients are time-dependent, 

and that the equation, by itself, is incomplete unless it is supple- 

mented by other evolution equations to determine the time-dependence 

of the coefficients. This was first discussed by van Kampen ~3~ Q 
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I. GENERAL INTRODUCTION ~ 

I.I Fluctuatin~hydrodynamics and renormalization of transport 

coefficlents 

In recent years relaxation phenomena in non-linear systems have 

been studied extensively. Two aspects of this problem have in par- 

ticular been investigated. On the one hand the renormalization of 

transport coefficients in the critical region has been discussed 

within the framework of the mode-mode coupling theory by Kawasski and 

others [4,5] . On the other hand slow decaying contributions to 

time correlation functions and memory kernels, as first found in s 

computer experiment by Alder and Wainwright 66] , were studied using 

either hydrodynamic, kinetic or related arguments ~6-13] . As has 

been pointed out, for example, by Kawasski ~14] and Zwanzig ~15] 

both aspects are intimately related. 

In these lectures we shall discuss the renormalization of certain 

transport-coefficients or susceptibilities consistently within the 

framework of fluctuating hydrodynamics. To this end we extend, so 

to say, the Landau-Lifshitz theory of linear fluctuating hydrodynamics 

[16], to include the non-linear (fluctuating) terms which occur in 

the hydrodynamic equations. A theory of this type is particularly 

well suited to study phenomena which occur at smell wave vectors 

and long times when hydrodynamic considerations are applicable. We 

shall restrict ourselves to situations ~n which the non-linearity of 

the fluctuating equations considered has a very simple structure. 

We shall on the one hand consider the behaviour of the dielect:ric 

constant in a fluctuating non,polar fluid and show that the deviations 

from the validity of the Clausius-Mossotti formula may be interpreted, 

within our framework, as being due to a renormalization of the die- 

electric constant as a result of density fluctuations. Explicit for- 

mulae can then be obtained to describe the behaviour of the frequency 

and wave vector dependent dielectric tensor in the critical region. 

The subject matter of these lectures is essentially contained in 
a series of papers by D. Bedeaux and the autbor []-3] . 
~A similar point of view was taken by Giterman and Gorodetskii [3~ • 
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We shall furthermore study the diffusion of tagged particles 

through an incompressible fluctuating fluid, starting from a non- 

linear generalized Langevin equation for the density of the tagged 

particles (the non-linear Landau-Lifshitz equation for the diffusion 

problem). We show thst~aversging this equation over the fluctuations 

a linear macroscopic diffusion equation is obtained with a renermalized 

wave vector and frequency dependez~t diffusion coefficient, for which 

we obtain a closed expression. An analysis of this expression leads 

amongst other things to the well known t-3/~ asymptotic behaviour 

for the diffusion memory kernel. We are able to discuss in detail 

the question whether the expression for the asymptotic be- 

havieur of the memory kernel should contain the renormslized dif- 

fusion coefficient, as argued by several authors [4-8], rather than 

the bare one. 

We will first discuss briefly a class of stochastic differential 

equations in their relalion to the theory presented. 

1.2 Stochestic different.ial equations 

The theory which we will present is essentially based on the 

consideration of stochastic differential equations of a certsin class. 

Basically these stochastic differential equations may be of the form 

(i.l) 

Here x(t) is s random process, 

force" (a given function of time 

tial operator of the form 

K(t) some "external generalized 

t) and L ~ 8 stochastic differen- 

9~ 

where ~o and ~ are constants, and y(t) is s second stationary ran- 

dom process, with zero mean 

(i.3) 

and given stochastic properties. 

The formal solution of eq. (i.i) is 

(1.4) 



128 

with L ~-I the inverse of L ~ and G ~ = L ~-I the random Green 

functiOn operator of the problem. If one averages eq. (1.4) one ob- 

tains 

where G is the propagator for the averaged equation. 

L = ~  -~ 

we obtain for ~X~) > the equation 

L <~> -- K(+) 
with 

L = (L * - : l  ) -~ 

Let us now define an operator ~' through 

so that 

with 

(i.5) 

Defining 

(1.6) 

(z.7) 

(i.8) 

L =: 9 + [o ÷ ~' : Lo + ~' (1.9) 
9{: 

(l.iO) 

~_~o-= L~ 4 (l.il) 

On the other hand 

L '~ = L o ( ~  ~- ~, ~o~(~))  (i.12) 

so that 

- _  

If we then substitute eqs. (1.9) and (1.13) into eq. (1.8) we obtain 
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x' = - L o  + 

= <"- Lo ({  ÷ ~'4 Go,.])-4 4. Lo > < ( t  + ~', &o~])- '> -4 

(1.14) 

Equation (1.14) defines the macroscopic operator ~' in terms of 

correlation functions of y(t). If we were to call ~ the bare 

kinetic coefficient ~nd ro + ~ ~(~) the random kinetic coefficient, 

then ~o ~' represents, so to say, the macroscopic"renorme]ized" 

kinetic coefficient since, according to eqs. (1.9) and (1.9), ~x> 

obeys the equation 

- - (~o +~')<xc~)>.~(~] (1.15) 
9} 

Note that ~' is still an operator, which turns out to be a convulu- 

tion operator in time such that eq. (i.15) has the form 

% 

9% 

In the next chapters we shall consider specific problems described by 

stochastic differential equations, more or less of the type of eq. 

(l.1). We will consider as stated in Section i.i the dielectric pro- 

perties of a fluctuating fluid, and the diffusion of tagged particles 

through a fluctuating fluid. We shall evaluate the corresponding l!re- 

normalized kinetic coefficient", i.e. the dielectric tensor, and the 

diffusion memory kernel, to some order of approximation. Stochastic 

differential eguations of the type of eg. (1.1) have recently been 

studied by van Kampen [17]. We refer to his papers for further 

references. 
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II, ON TH~ CRITICAL BEHAVIOUR OF THE DIELECTRIC CONSTANT FOR A NON- 

POLAR FLUID 

2.1 Introduction 

In the theory of the propagation of light through a fluid two 

aspects have received special attention. On the one hand one has 

studied the scattering of light from an incident beam. The pheno- 

menological theory of this phenomenon goes back to the work of 

Smoluchowski [].8~ and Einstein [19]. Molecular theories of light 

scattering have subsequently been given by, among others, Yvon EYO] 

and Zimm [2~ and also by Fixmann C22] , who was able to justify 

Einstein's result. 0n the other hand the propagation of the trans- 

mitted beam has been studied by calculation of the refractive index 

of the system. Theories for the refractive index have been given by, 

among others, Yvon C20], Hoek E23], Roseufeld ~24] , Mazur and 

Mandel ~25]. All these theories start essentially from a molecular 

basis. The theory of the refractive index is related to the theory of 

light scattering to the extent that the imaginary part of the refrac- 

tive index, in the absence of true absorption, is directly related to 

the total intensity of the scattered light. 

All molecular theories both of light scattering and of the re- 

fractive index suffer from the drawback that they are based on series 

expansions in the polarizability per unit volume and the calculation 

of the first few terms of the series. Strictly speaking they are 

therefore limited to systems where the refractive index is not ap- 

preciably different from unity. This makes their application question- 

able, for instance, in the critical region. The phenomenological 

theory does not suffer from th~s drawback. 

We shall develop here a theory of the dielectric constant in a 

fluctuating fluid, which yields an expression for the macroscopic 

wave vector and frequency dependen~ dielectric tensor in terms of 

density fIuctustion correlation functions. This tensor describes the 

response of the system to an arbitrary electromagnetic field. Its 

transverse part, with k and ~ satisfying the usual dispersion rela- 

tion, yields the index of refraction of the medium in terms of these 

correlation functions. The theory is not restricted to small values 

of the polarizability per unit volume and is therefore well suited to 
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the study of the behaviour of the dielectric tensor in the critical 

region. In particular we shall study the dispersion of the velocity 

of light in the medium when it is close to the critical point. For 

small values of the polarizability per unit of volume the results 

can be shown to be in agreement with those af previous molecular 

theories. 

2.2 Formal,, theor 7 

The Maxwell equations in a fluctuating fluid are 

'~t 9{  

where ~(~,t) and ~(~,t) are the fluctuating electric and magnetic 

fields respectively, and ~(~,t) and ~(~,t) the fluctuating induc- 

tions; units are chosen in such a way that the velocity of light is 

unity in vacuum. Neglecting the magnetic properties we have 

H : B  , D = E + £  (2.2) 

with P the fluctuating polarization. 

We define Fourier transforms with respect to 

field f by 

: g(r ) 

and t af a 

(2.3) 

From equations (2.1) and (2.2) we then obtain the vector wave equation 

_ k (2.14) 

The general retarded solution of this equation is 

(2.5) 

where E ° is a solution of the homogeneous equation and is therefore 

the incident field in vacuum. In the presence of externally controlled 

sources ~o cantains also the vacuum fields generated by these sources 

The retarded propagator af the electramagnetic field in vacuum F 
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is given by the diagonal elements in K ,~o representation 

(2.6) 

: ~ ~. k-' [~C~-~>- ~{~+~}] + ~  k. ~ 

where o represents an infinitesimally small positive number. 

From eq. (2.$) or (2.5) it can be seen that the electric field 

will fluctuate because of the fluctuations in the polarization of the 

dielectric. These in turn will be caused for s non-polar fluid by 

fluctuations in the density ~ (g,~) and in other thermodynamic 

variables. Averaging over these fluctuations, denoted by ~...~, 

yields the macroscopic quantities. In order to come to a closed des- 

cription we must relate the polarization to the electric field. In 

linear optics ~(~,t) is given by 

w},ere X'(~g,{)) ,  the f l uc tua t i ng  s u s c e p t i b i l i t y ,  is  re la ted to the 
density by the Clausius-Mossotti formula 

~o )-i 2"*(~') = ~o ~ (4- ~ ~ (2.8) 

where ~o is a constant frequency independent molecular polarizability. 

This restricts the applicability of the theory to the transmission of 

fields at non-resonant frequencies. The validity of eq. (2.8) is 

assumed here for density fields w~ich vary sufficiently slowly in 

time and space. Eq. (2.8) can be justified on a molecular basis[l'. 

Deviations from eq. (2.8) occur if ~ varies appreciably over mole- 

cular distances. Now upon substitution of eqo (2.8) into eq. (2.5) 

one obtains 

&- = E ' °  - F'- ~(~" E ( 2 . 9 )  

with the formal solution 

E = 
= )-,. ~o 

+ F . X  ~ (2.1o)  

In beth eqs. (2.9) and (2.10), ~* and ~ have to be interpreted as 

operators. 
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According to eq. (2.8), ~ is diagonal in the ~,t representa- 

tion. It is therefore ~ convolution operator in the ~,~ represents- 

rich. The propagator F is diagonal in the k,~ representation (cf. 

eq. (2.6)) end 8 convolution operator in the ~,t representation. 

The macroscopic electric field is obtained if one averages eq. 
(2.10), 

C~> = <0. ~x*)-1) • Y° (2.11> 

On the other hand, substituting eq. (2.10) into eq. (2.8), and using 

also eq. (2.11), yields for the average polarization 

= ~ - y >  = <Z*(~+FZ,)-~>.E" 

= ( x *  (~+ #z - ) - '> - (0  ,~r- ) - '>- ' .  4 ~  (2.12) 

~his equation defines the macroscopic dielectric susceptibi]ity ten- 

Sot ~- and dielectric tensor 

It will be the starting point of our further discussion. 

In the absence of fluctuations it fo].lows from the above equation 

that the macroscopic dielectric constant is given by the Clausius- 

Mossotti formula 

~°_~ = ~ .  = ~<o fo (~_  ~ ~° ~o)-4 , 

We will now investigate in more detail the deviations from the 

Clausius-Mossotti formula, caused hy the density fluctuations. 

define the propagator in the absence o£ fluctuations 

- (~+ # ' X o )  -~ F (~ ' ,~)  = K ~ - k ' - + ( ~ + ~ o ) ~ - ~ °  

We 

(2.15) 

and write 

2 "~- = 2 °  -~ AZ* (2 .16)  
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If we then substitute eq. (2.16) into eq. (2.13), we find that 

= + , , z * }  - t  2 (2.17) 

Equation (2.17), which is equivalent to equation (2.13), may be used 

to obtain expansions for ~ in terms of density-density correlation 

functions. We note that the "renormalized" propagator tee accounts 

for the fact that the fluctuations in ~* interact via the medium 

rather than through vacuum. Each term in the expansion of eq. (2.17) 

corresponds to a partial resummation of the terms in the expansion 

of eq. (2.13) in powers of ~# . The formal transformation from eq. 

(2.15) to eq. (2.17) performs these resummations to all orders. It 

should also be mentioned that one can easily convince oneself, using 

the fact that the fluid is translationally invarisnt in space and time, 

that & is diagonal in the ~,w representation, as of course it 

should be. 

Before proceeding with the analysis of the influence of density 

fluctuations on the behaviour of the dielectric constant, we shall 

derive two further identities. 

Define the "cut-out" propagator: 

H = F -- ~ ( 2 . 1 8 )  

and the Clausius-Mossotti function: 

~' "= 3, ( ~ - 4 ) ( ~ - " + z )  - t  ( 2 . 19 )  

O r  

( 2 .20 )  

With these definitions and eq. (2.8), one finds after some straight 

forward transformations from eq. (2.13) that 

an e x p r e s s i o n  f o r  the C l a u s i u s - M o s s o t t i  f u n c t i o n  i n  terms o f  the den-  

s i t y  correlation functions. 

In the absence of fluctuations, eq. (2.21) leads to the Clausius- 

Mossotti formula in its usual form. An even more useful identity is 

found if we write 
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f' -- f'o ,,- & ?  , to - - c ~ ' >  (2.22) 

Substitution of eq. (2.22) into eq. (2.21) leads to 

(2.2.5) 

with the renormglized propagator 

K - ( ~ * H < o ~ o )  -~ H 

I ]-' _ I 
I (F-~) 

(2.24) 

If one uses the relations (cf. eq, (2.14) and (2.15) 

C~o+ ~ -- ] 

F[o ~_ 'l+ 

# = t - t : ~o (~O- ' ) J  -F~o 

(2.25) 

(2.2e) 

one finds from eq. (2.24) a relation between the propagator K and 

the propagator F~o occl)rring in eq. (2.17) 

The general expression eq. (2.23) relates the corrections to the 

Clausius-Mossotti formula directly to density fluctuation correlation 

functions. The propagator K accounts for the fact that these den- 

sity fluctuations interact via the medium. As we see from eq. (2.27), 

is essentially the propagator in the medium with dielectric con- 

stant E~ , modified by Lorentz corrections. 
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2.3 Expsnsion of the dielectric tensor in terms of densit2-densit~ 

correlation functions 

We shsll now study eq. (2.33) in more detail. 

right hand side in powers of ~o ~@ , we obtsin 

I 
k'4k. 

where the density-density correlation function 

Expanding the 

(2.28) 

S 2 is defined as 

= (2.29) 

and where the integral in (2.28) is cut off at some inverse molecular 

distance. The introduction of the cut off ifl eq. (2.28) is related 

to the fact that eq.((2.8) does not hold any more if ~ veries ap- 

preciably over molecular distances. In s molecular version of the 

present theory, in which corrections to eq. (2.8) sre taken into 

account, it is not necessary to introduce 8n explicit cut off Ill. The 

Fourier transform of S 2 is defined in the usual manner. If one 

als0 expands ~ in ~o ~o , one obtains a series expansion in 

powers of Wo[o , which is in fact closely related to the series 

obtained by previous authors from molecular theor:[es. Such 8 series 

will rspidly converge ir 4,{o<~I or i~ ll['ll~< ~ , i.e. fo~ 

sufficienti# low derlsities, i{owever, the expansion in eq. (2.28) 

will also rspidly converge if ~o ~o is of order unity, but the 

integrsls involving the correlation functions become progressively 

smaller, i.e. if the density fluctuations are sufficiently small, so 

that I~ ~-~ I)~I • Such sn expansion is therefore well suited to 

study the behsviour of the dielectric tensor in the critical region. 

In the next sections we will c81culste the correction to the 

Clausius-Mossotti function originating from the density-density 

function $2, assuming therefore that under most circumstances this 

is the dominant contribution. Using (2.25), eq. (2.28) yields for 
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~(E,~ ~_ Eo - ( ~ o - * l ~ C o )  -~  ~(~-E', ~-~') ~ {~', ~'/~E'J~' 

(2.30) 

where we have also used eq. (2.27). 

At this point it should be mentioned that eq. (2.50) can also be 

obtained from the general formula (2.17), if one expands the r.h.s. 

consistently up to powers quadratic 5n A t . 

The correction to the dielectric ~ensor in eq. (2.30) has the 

form Of a mode-mode coupling expression, encountered in the now 

familiar theories for the renormalizaSion of transport coefficients. 

Here the coupling is between the electromagnetic mode and the modes 

governing the behaviour of S 2 (hydrodynamic modest. In the language 

of the mode-mode coupling theories we m8y call go the "bare" di- 
.-b 

electric constant and [ the renormalized dielectric tensor. 

Up to corrections of order (v/c) 2 (v is the thermal velocity 

in the fluid) we may neglect the motion of the fluid, so that we can 

use the static approximation for the correlation function S 2 

(2.31) 

Equation (2.30) then becomes 

E = ~ o - ( a - t )  ~ ~(zn) -3 ~,C¢-~') o(~:.,)- J£' (2.32) 

For isotropic systems we may write 

(2.33) 

where the transverse and longitudinal dielectric constants are given 

by 



138 

with ~ a unit vector orthogenal to ~ , ~.~= o , 

(~.35) 

For k in the hydrodynamic region the density-density correlation 

0 @ function has, in good approximation the rnstein-Zernike [26,27] form 

, ~ ( k )  = ~:r3 T k ( 4 4- kZ~2)  - I  ( 2 . 3 6 )  

where ~ is Boltzmann's constant, T the temperature, ~ the iso- 

thermal compressibility and ~ the hydrodynamic correlation length. 

For larger values of k one has to add terms describiog the 

molecular structure at small intermolecular distances. We therefore 

write in general 

(2.37) 

M 
We shall assume that S~ is e sufficiently slowly varying function 

of k/k o and becomes small for hydrodynamic values of ko 

In the following sections we shall evaluate the various contri- 

butions to ~(k,~) by substituting eq. (2.37) into eq. (2.32). 

2.4 The extinction coefficient 

We shall first compute the imaginary part of dielectric tensor 

in the approximation given in eq. (2.31). This quantity is directly 

related to the extinction of light in the fluid. Substituting eq. 

(2.15) into eqs. (2.3~) and (2.55), gives after integration ever k' 

end with -O_ = k'/R' 

= _ _  ~oC~°_ t f  z j ~ s ~ ( l ~ _ ~ o ~ j ) ( ~ . ~  ) (2 .38 )  
32n c 

The calculations of sections 4-6 can, in principle, also be made 
by assuming that the 0rnstein-Zernike form is slightly modified: 
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where ~ is the angle between ~ and _~ , and also 

~ =- ~o~- i s  the "bare"  index o f  r e f r a c t i o n .  

The extinction coefficient is defined as 

(2.~9)  

with 

where ~(~) is the solution of the dispersion relation 

k ~ = ~ &~(k,~) • 

To lowest order, 

(2 .40)  

(2.#l) 

(2.&2) 

so that we have to first order from eqso (2.40) -- (2.42) together with 

eq. (2.38) that 

w h e r e  . 

(2 .z~4) 

In formulae (2.38), (2.39) and (2.4~) we can substitute the 

Ornstein-Zernike form for $2, since only hydrodynamic values of 

the argument occur. The integrations ca~ then be performed. This 

yields in particular for ~) 

(2.45) 

with 
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(2.~7) 

(2.¢8) 

(2.  #9) 

For the explicit results for ~r(~,~) and Z ~  6~(k,~) , the reade r  

i s  r e f e r r e d  to [ 1 ]  . 

The expression for the extinction coefficient contains the factor 

~6o~Z)/ 5) ~ , which also appears in the expressions obtained from 

the phez~omenological theory of light scattering. The first molecular 

derivation of this factor was given by 2ixman [22~. For ~ <mr , 

eq. (2.45) reduces to the expression derived by Rosenfeld in that 

limit. For ~o~o of order unity Rosenfeld's theory does not 

strictly apply. 

We also note that if the system is in the critical region, but 

not extremely close to the critical point, eqo (2.&~) applies and 

~(~) appears to diverge as k , which diverges as ~ ~ However, 

extremely close to the critical point, the behaviour is described by 

eq. (2.49), and ~[~) is logarithmically divergent. Furthermore the 

extinction coefficient close to the critical point behaves roughly 

as ~u rather thaD ~W . This is the phenomenon of critical 

opalescence. 
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2.5 The ststic~ non-dispersive dielectric tensor 

Let us now study & (~,~) , for ~ = 0 and k = O. We have in 

this case from eq. (2.32), using slso eqs. (2.15) ~nd (2.37) 

(2.5o) 

where 

£" = I k' k 
0 

(2.51 

k.$ 

@ 
(2.52 

We cannot evaluate the contribution ~g~ explicitly. It does not 

depend critically, however, on the thermodynamic variables. On the 

other hand the integral in (2°52) is quite elementary if ko~2>l , 

and one obtains 

EH= (2q.n'L~o~ -I (~o-l) ~ (~o~L) k~T~ ~-'~ (k.% - - i  (2.53) 

If Ko~ ~ J , which is typically the case if the system is suf- 

ficiently dilute, eq. (2.52) gives 

u = (~'I n ~ ~o)-i (~o _i)3 ( ~o +zJ kBm'~ k~ (2.54) 

As is seen from eq. (2.52), the contribution ~ to the static 

dielectric constant exhibits a marked critical behaviour. In the 

next section it will become apparent that this term must be taken 

into account when discussing the critical behaviour of the velocity 

of light. 
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2.6 .T,he real dispersive part of t,he d[electric tensor and the 

velocity of light 

If we define the dispersive part of ~ (~,~) as 

we obtain from eq. (2.~2), using eqs. (2.15) and (2.~7), 

(2.55) 

where 

x,'--~" , x,~,] (2.57) 

In eq (2.57) we have neglected the contribution to the integral a- 

rising from the molecular part S~ of S 2. This implies that we have 

neglected terms of order (~Iko] ~ and (kl~o) ~ , which is certainlF 

permissible for optical frequencies and wave numbers. If furthermore 

ko~ ~ ~ , the integrations in eq. (2.57) may be performed and 

analytic expressions for the real part of A~ can be obtained. We 

again refer to [i] for these expressions. Here we shall only dis- 

cuss explicitly the velocity of light, which is defined as 

(2.5s) 

whe re 

corrections, we can again use eq. (2.43) so that 

n(bo) is given by (2.41) with (2.~2). To first order ir~ the 

(2.59) 

With the result of the integrations in eq. (2.57), and usin~ a]so eq. 

(2.55)~ one then finds that 
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32/'1 ~ I  J 

(2.60) 

where 

"I" IIz 

(2.61) 

with u given by eq. (2.z~7). 

Furthermore 

i,T" (2 2h .C) 

(2.63) 

Equation (2.60) describes the behaviour of c(uo) in the critics] 

regiorJ: not too close to the critical point c(uo) appears to di- 

verge like ~ Close to the critical point eq. (2.63) applies and 

shows that c(~o) remains finite. If o:ne expands eq. (2.60) in power~ 

of ~o ~ and only retains quadratLc terms, one obtains an expression 

identical with the expression obtained in that order for c(~o) by 

Larsen, Mountain and Zwanzig 128~ from a molecular theory. Inspection 

of expression (2.60) shows, however, that the critical non-dispersive 

term in. c, which is of order ~o ~ can have the same magnitude, 

not -boo close to the critical point~ as the dispersive contribution 

which is of order 4~ ~ 

To conclude we may remark that the theory developed in this 

chapter for the dielectric tensor, on the basis of a theoretical 

phenomenological-fluctu~tion approach, enables one to give a detailed 
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description of the behaviour of the dielectric tensor in the critical 

region, and applies even when the refractive index is appreciably 

different from unity. The theory has been generalized to the descrip. 

tion of binary fluids (liquids) [29]. 

III. RENORMALIZATION OF THE DIFFUSION COEFFICIENT IN A FLUCTUATING 

FLUID 

5.1 Derivation of a general formula for the renormalized diffusion 

coefficient 

We consider a density distribution n(gA) of tagged particles 

in an incompressible fluid. It is assumed that the solution of the 

tagged particles is sufficiently dilute so that the fluctuations of 

the fluid are those of the pure fluid in equilibrium. The density 

n(~,t) satisfies the conservation law 

.(~,~) = _&v j (~.~) (3.1) 

where j(~,t) is the current density of the tagged particles. In 

the hydrodynamic regime this current is assumed to be given by 

(3.2) 

where ~(~,t) is the fluctuating velocity field of the fluid. The 

first term on the right hand side of eq. (3.2) represents the convec- 

tive part of the current. The second term represents the diffusive 

part of the current with respect to the moving fluid, with a "bare" 

diffusion coefficient Do which is assumed to be constant. The last 

term represents the random current which is. assumed to have the pro- 

perty that 

where the average is taken for given values of the hydrodynamic fluid 

field ~(~,t). 

Substituting eq. (3.2) into eq. (3.1), we find that n(~,t) obey; 

the non-linear Langevin-equation 
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(3.4) 

where ~ is a vector operator. Even though this equation is linear 

in the density of the tagged particles the coupling to the fluid is 

non-linear. 

The Fourier transform of a field ,f(~,t) is defined as 

(3.5) 

In the k,~ representation eq. (5.4) becomes 

where we note that the operator ~ in this representation has matrix 

elements 

= 

Eq. (3.6) has the formal solution: 

where no(k ,~) is a solution of the homogeneous equation and there- 

fore a non-fluctuating quantity. G O is the bare diffusion propaga- 

tor (in the absence of fluctuations) 

Go(k,~)-- -- (~- Ook~] -~ (3.9) 

The formal solution can be rewritten as 

T h i s  y i e l d s  f o r  t he  c u r r e n t  o f  t he  t agged  p a r t i c l e s  a f t e r  some a l g e b r a  
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Averaging eqs. (3.10) and (3.11) first over the random current 

and then over the fluctuations of the fluid we find for the mean 

particle and current density of the tagged particles using also eq. 

(3.3) 

where we have introduced the shorthand notation 

<---> = <<--" > 

Eliminating no, the mean current can be written as 

This relation defines the "renormalized" diffusion coefficient 

D is 8n operator which is, using translational invsriance and sta- 

tionarity of the fluid, diagonal in the k,U~ representation. From 

eqs. (3.1), (3.15) and (3.16) it then follows that the mean tagged 

particle density satisfies the diffusion equation with the renor- 

malized diffusion coefficient 

The macroscopic diffusion propagator is therefore diagonal in the 

~,~o representation and is given by 
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G ( ~ , ~ )  - - (~-k~(~,~) -' 
(3.18) 

In subsequent sections we will evaluate D by expanding the 

right hand side of eq. (3.16) in fluctuation correlation functions 

of the fluid. Note also that 

G = ~&*> (3.19) 

where G* is the fluctuating diffusion propagator 

G~ _(~_ 0ok~_~ ~)'__ ~i ÷ ~ So~ ~] -~ ~o (3.2o) 

Eq. (3.19) can be obtained from eq. (3.16) with some straightforward 

algebra. See in this connection section 1.2. 

3.2 An expansion of the renormalized transport coefficient in cot- 

relation functions 

In this section we will expand the renormslized transport coef- 

ficient in terms of the correlation functions of the fluid. Expanding 

eq. (3.16) in powers of ~ yields 

- k  -~ ( , ~ . ~  C~o-~. 0" ~o-~-¢ ~o-~-~'2 

(3.21) 

To second order in H one has 

(3 .22 )  
..% 

where all contributions are diagonal in k, UJ representation due to 

translational invariance and ststionarity of the fluid. We note that 
.% 

v in eq. (3.22) should be interpreted as an operator which is dia- 

gonal in the ~,t representation and a convolution operator in the 

~ representation (c.f. (3.7)). The diagonal elements of D I 
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can now be written as 

(5.23) 

where the correlation function of V is given by 

(3.24) 

For sn isotropic incompressible fluid we furthermore have 

(5.25) 

Substituting eq. (3.25) into eq. (3.6) we therefore have 

or in ~, t representstion 

(3.26) 

b~(g,~) = k-'(,,) [.Ik'(k-~, (k'.k))S~ (k,~) C~o (¢-~', ~:) (3.27) 

This is the memory kernel for the diffusion process. 

The coefficient Dl(~ ,~) as given in eq. (3.26) will in general 

diverge because we use a continuum description of the system. One 

therefore has to impose a cut off k o in k space where k o is of 

the order of an inverse molecular length. The coefficient Dl(~,t) 

does not suffer from this drawback, however the answer will only be 

reliable for sufficiently small k and sufficiently large t. As a 

remark we note that Go(~,t) is according to eq. (3.9) given final 

by 

(5.a8) 

and therefore satisfies a causality condition. Consequently Dl(k,t ) 

satisfies a similar causality condition. 
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5.3 The lon~ time behaviour of the diffusion mem0r ~ kernel~and the 

~ ~ dependent renormalized diffusion constant 

In this section we will first evaluste the memory kernel Dl(k,t ) 

as given in eq. (5.27). For this purpose we shall first use the fluid 

correlation function, as found from linesrized hydrodynamics with 

constant coefficients. We will come back to the more general case at 

vv for hydro- the end of this section. The correlation function Str 

dynamic values of k and t is then given by ~15] 

(5.29) 

where k B is Boltzmann's constant and W the kinematic viscosity. 

Substitution of eqs. (3.28) and (3.29) into eq. (5.27) yields 

, I~K, [- ~J' kBTo(W -~ 4~k,~(~-~')~p t~k,~_~0o(k,'.k~-~k~'~)](3-3°) 

Performing the integrals one obtains for hydrodynamic times and wave 

vectors 

2 -; k ~ Do ~t / 13,(.k,~)=S%' o k,T.[,,t(9+ - , p'Oo)exp i~" ~-~,v 
(5.31) 

where 

I ' -~ I z (3.32) 

The notation erf indicates the error function. Furthermore f(~) 

is positive and real for positive values of~ For small values of 

E (3.33) 

For 18rge velues of 

[1, • ') 
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For k = 0 one finds the usual form 

~o4kBTo qn~(v+Do) , { , o  (5.35) 

For k larger than zero one can distinguish two regions in which the 

time dependence is essentially different 

(5.36) 

In the general case when the transport coefficients of the fluid 

are wave vector and frequency dependent, eq. (3.29) is still valid 

asymptotically for large times using the values of the transport co- 

efficients in the hydrodynamic limit 

~0 ~0 

These transport coefficients may then also be interpreted as the re- 

normalized coefficients of the fluid. All the results derived in this 

section for the long time tails are therefore still valid asymptoti- 

cally in this order of the expansion (3.21). In a subsequent section 

we will discuss the behaviour of higher order terms in eq. (3.21). 

These contain, it turns out, next to faster decaying terms, contribu- 

tions to the asymptotic t -3/2 behaviour. It should also be mention- 

ed that the t -7/4 contribution to the long time behaviour of D(O,t) 

found by Pomeau [8] and Ernst and Dorfmann [¼0] would follow if one 

takes into account a term proportional to k T in the viscosity of the 

fluid, as found by these authors. 

We shall now calculate the diffusion coefficient D(k,~) as 

given in eq. (5.26) by choosing a suitable molecular cut off wave 

vector k o. The correlation function in the (k,~) representation 

is 

9k ~ ~sT~ 

the Fourier transform of eq. (3.30). Substitution of eqs. (3.9) and 

(5.57) into eq. (5.26) yields 
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~o 4 {+p <..<+. 
4nsO, 

o - I  -~o 

"~ k ~ z _  [/.Ibo_~,J_l)o{kll.k , -2kki1~)] 
bali 4yxR 'q 

If one evaluates the integral in eq. (~.38) one obtains 

--ll/- I, I I I  ksTo ~'k 3 rl(Oo'i'~) (D.k- iw) "~Cr) I Z o - . 7  

with 

r m ~ b~k ~] 

~or small values of Irl, 

I 

which is the case if Dok2~]~i 

3 S 

(3.38) 

(3.39) 

(3.4o) 

, one has 

(3.43) 

so that 

k6T~ ~ 

Furthermore one finds that 

n (i)o+10 -'a (-i~) "2 t 

- " ' t T - : W  J.l ~n ~- (i)o.V)~ § 

(3.42) 

(3.43) 

In the zero frequency and wave vector limit we find 

k6To ko 

If the tagged particle is sufficiently large so that 

(3.44) gives, with ~=~@o the viscosity, 

D o = O, eq. 

(3.45) 
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This is the Stokes-Einstein law if one chooses the cut off equal to 

k o = ~(diameter) -I = ½UR -I 

where R is the radius of the tagged particles. 

derivation of this result ref. 30 . 

(3 .#6) 

See for a proper 

5.# Expansion of the renormalized diffusion coefficient in terms of 

the renormalized diffusion propagator 

If one investigates the behaviour of the higher order terms in 

the expansion (3.21) one finds that they also contain contributions 

to the t -5/2 long time behaviour, next to faster decaying terms. 

Some of these contributions can easily be resummed and then lead for 

k = 0 to an asymptotic time behaviour 

where D r is the resummed part of D and where Dl(k=O , ~=0) is 

given by the second order approximation to D(k,~ ), eq. (3.#4). 

Formula (3.#1) suggests that summation over all the contributions 

to the t -3/2 behaviour leads to the asymptotic formula 

containing the full rather than the bare diffusion coefficient. Eq. 

(3.48) could be obtained by extensive partial resummation as is in 

fact done by Kawasaki [4 7 in the context of the mode-mode coupling 

theory. We shall obtain this result here by an alternative method, 

without the use of resummation techniques. 

In order to proceed with our analysis we rewrite the full dif- 

fusion propagator eq. (3.18) in the form 

c- = - ( . ~ - k ' ~ ) - ' - - -  G-o- ~o k~(O-~o) C~ = [~ ,  ~ok~C'O-Oo.)-J-'~o (3.~9) 

With the help of this equality one can rewrite after some straight 

forward algebra the general formula (3.16) for the diffusion coef- 

ficient in the form 
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The right hand side can be expanded in powers of correlation function~ 

of v and of (D-Do)k 2. The quantity (D-Do)k 2 can then be elimina 

ted from the r.h.s, by iteration. The result is an expansion for 

(D-Do)k 2 in terms of correlation functions of ~, but always con- 

tains the full diffusion propagator rather than the bare one. Up to 

second order one finds 

<3.51) 

This expression which has again the well known mode-mode coupling 

form gives, for the asymptotic long time behsviour, after an analysis 

similar to the one in section 3.3 the result (3.48). 

If one analyses the contributions of fourth order in v (assum- 

ing ~ to be 8 Gsussian process for hydrodynamic k,~)so that odd 

orders in ~ vanish) one finds that these decay for k = 0 ss t -2. 

The sixth order contributions, which have also been analysed, decay 

as t -5/2 ~st For details of this analysis we refer to reference 

[3] . 

To summarize, it would therefore seem that an expansion starting 

from formula (3.50), in terms of the fluid correlation functions and 

the renormalized diffusion propagator, is indeed a systematic one for 

the long time behaviour and that eq. (3.48) is asymptotically correct 

to all orders. 
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I. INTRODUCTION 

It is well-known that the official, common language for physics 

is not English but "broken English". You have already 811 realised 

that the language which I speak is, instead, "awfully-broken English", 

I apologize for this and I hope that, nevertheless, you will under- 

stand me. 

The aim of my talks here will be to remind you of a few funda- 

mental ideas on the special character of the transport equations, 

i.e., the equations governing the irreversible behsviour of macro- 

scopic systems. I will not give an account here of the results ob- 

tained recently by the Brussels group, which can be regarded as a 

rigorous mechanical theory of irreversibility. These will be pre- 

sented to you by Professors Prigogine and Mayn@. Instead, I will deal 

with the ideas underlying the various derivations of transport equa- 

tions as they have appeared in the literature during the 18st fifteen 

years. I hope that my talks will make the comparison of these 

approaches to irreversibility easier for you. 

The question of whether the world is actually reversible or not, 

is irrelevant here. Irreversibility may be seen as an objective pro- 

perty of Nature, and thus one could think, for instance, that some 

ten thousand millions years ago a creation process was begun and that 

since that time the world has been evolving irreversibly towards a 

so-called "M-point". On the other hand, irreversibility may also 

be considered ss a "human illusion" according to yon Smoluchowski. 

The important point for us is that, whenever we observe macroscopic 

systems, the results which we find are the same as if the systems 

were behaving irreversibly. This irreversible behaviour is expressed 

"lrrev s by means of equations which are said to be " er ible". These 

are for instance the phenomenologicsl equations. 

in thermodynamics, irreversibility is introduced for an isolated 

system through the inequality 

dS/dt ~ 0 . (i.i) 

This inequality means that every real process which takes place in 

an isolated system increases its entropy. According to Gibbs, 
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entropy is defined in statistical mechanics as 

~' = - ~ t,,, ~ ( 1 . 2 )  

where k is Boltzmann,s constant and ~ is the probability density 

in phase space associated with the system. The bar denotes the cor- 

responding ensemble average. Since the ensemble probability density 

is in general time-dependent, the entropy defined in formula (1.2) 

seems also to be time-dependent. However, the probability density 

satisfies the Liouville theorem 

~I~ = o ( l . 5 )  

and with the use of (i.5) it is very easy to prove that the definition 

(1.2) implies 

4 S / 4 %  = o . ( l . 4 )  

Expressions (I.i) and (1.4) are in contradiction because the latter 

means that it is possible for an isolated system not in equilibrium 

to evolve k@eping its entropy constant. Indeed, to obtain equation 

(i.i) we have not made use of any stea~y state condition for q . The 

contradiction between (i.I) and (1.4) arises as a consequence of the 

use of Liouville's theorem (i.5). 

Let us now review briefly the methods by means of which statis- 

tical mechanics is able to describe macroscopic systems from micro- 

scopic laws. This review will aid us in understanding the reasons 

behind the contradiction involved in the statistical definition of 

entropy and, moreover, will give us the procedure for removing the 

difficulties. We will see that the mechanical evolution involves no 

irreversibility at all. In order to obtain irreversible equations 

it will be necessary to interrupt the dynamical evolution at every 

instant of time. 

After that, we will deal with the most famous transport equation, 

the Boltzmann equation, and we will try to investigate how irrever- 

sibility is involved in it. We will review one of the methods (due 

to Van Hove) for introducing irreversibility into reversible equations 

and we will see how this method is applied to derive some irreversible 

equations, namely: the Prigogine-Brout, the Langevin, the Fokker- 

Planck and the Choh-Uhlenbeck equations. 

Perhaps some if not all of the topics of my talks are already 

familiar to most of you. However I think that it is sometimes 

necessary to review the things which we know from a unified point of 

view. And it is now a good time to do this because Professors 

Prigogine and Mayn@ will deal with the same problems from a different 



158 

viewpoint. In any case, I am sure that you will be amused when you 

hear me present matters well known to you in a way that will indeed 

be worse than if you had done it yourselves. 

II. GENERAL REMARKS ON IRREVERSIBILITY 

2. Statistical description of a system 

Perhaps the most characteristic feature of the m~croscopic and 

macroscopic descriptions of a large system is the amount of infor- 

mation that each one of them gives us about the system. Indeed, the 

exact microscopic description involves an enormously large number of 

parameters(of the order of the number of internal degrees of freedom 

of the system); on the other hand, for a macroscopic description one 

only needs to specify the values of a small number of variables (such 

as volume, energy, etc.). We say that by means of the macroscopic 

description one specifies maerostates of the system and we give the 

name of microstates to the different states described microscopically 

So it is clear that for a particular maerostate of the system there 

are many microstates compatible with it. In other words, by passing 

from the microscopic description to the macroscopic one~ one 19ses 

information. 

The Gibbs' ensemble method for treating statistical mechanics 
i, 

consists in considering for each macrostate of the system an ensemble 

of equivalent independent systems, all of them in the same macrostate 

but realising each one of them through a different microstate among 

those compatible with the given macrostate° This ensemble is repre- 

sented in the phase space of the system as a cloud of representative 

points and is char~cterised by the so-called density in phase space, 

which for a given point of phase space at a given instant of time is 

proportional to the number of representative points around the given 

point in phase space at that time. Thus one can define the proba- 

bility of a microstate at a given time as being proportional to the 

density in phase space for the phase point corresponding to the given 

microstate. In order to associate with each macrostate of the system 

a density in phase space it is necessary to introduce an "a prioriJ' 

statistical postula.te. The most natural one is that the relative 

probabilities of finding the system in specified regions of the phase 

space are proportional to the volume of these regions if they repre- 

sent equally well the information which we have about the system. 

Let us now emphasize that the statistical description, to which 
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we are here referring, reflects the lack of microscopic information 

which we have about our system. Indeed, instead of specifying our 

system by means of its mierostate (as would be the case in the 

mechanical or microscopic description), we specify only the proba- 

bility of a microstste; that is, we deal with 8 set of many points 

in 8 small region of phase space instead of with only one point. 

3. Natural motion i n phase spac9 

As 8 consequence of the equations of motion, each one of the 

representative points in phase space is moving throughout the access 

ible region of this space. This motion will be referred to as the 

natural motion. Therefore the number of representative points in a 

fixed region of phase space will in general change with time. 

Since representative points can neither be created nor 8nnihil8 

ted in the course of motion, their flow in phase space must be con- 

servative, that is 

~_ = - &~ (~ = - ~. ~,~I ~ _ ~ ~ ~. (~.l) 

Here 

is the probability density in phase space, which depends on the 

dynamical variables of the system composed of N point-particles as 

well as on the time; and 

Now, using Hamilton's equations 

£ =¢-Fi ' ~i = - ~  (i ° ~,", <3.~> 
where H = H(F",~) is the Hamiltonian function of the system, we 

get 

~W'@" = 0 (5.5) 

~-Y =~-Y ~F~ V ~ ~.~,~J~ o. (3.6) 

and therefore 
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This equation means that the density in phase space (proportional to 

) remains constant around a moving point; that is, the probability 

density is an integral 9f the motion. This is one of the forms of 

Liouville's theorem, which states that the cloud of representative 

points moves like an incompressible fluid. By introducing Liouville's 

operator 

= 

equation (}.6) becomes 

which is known as Liouville's e~uation and provides us with the time 

variation of the probability density for a fixed point in phase space. 

It is important to emphasize that this variation of ~(t) is entirely 

due to the natural motion of the representative points, that is to a 

mechanical motion. It is for this reason that one can say that 

e~uations (3.4) and (}.8) are e~uivalent, since both equations describe 

the natural motion of the system. 

Hamilton's equations must be used to find the microstate of the 

system at a time t if its microstate at time t=0 is known; whereas 

the Liouville equation must be used to find the probability at time t 

of a given microstate if its probability at time t=O is known. I__n 

both cases the same dynamical problem must be solved. 

Natural motion may also be seen as a set of transformations which 

for any time t map the phase space onto itself. These transforma- 

tions ere induced by the equations of motion (3.#) and have the pro- 

perty (equivalent to Liouville's theorem) that they conserve volume, 

that is, the volume of a region dR =d~d~ of phase space is 

equal to the volume of the transformed region ~ = dr~d~ • 

This property is easily proved by writing 

d~o = ~ drt (5.9) 

where J, the jacobian of the transformation, is equal to unity by 

virtue of Hamilton's equations. 

Since the density in phase space is proportional to the proba- 

bility density, the number of representative points at time to in a 

given infinitesimal region of volume d~ around (F~.~) is propor- 

tional to ~(~,~% ;~.)~ . Now ~(~,~;~ is proportional to 

the number of representative points in the transformed region, which 

at time t contains the representative points of the original region. 
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Hence 

Since the volumes dR and ~t are equal, one returns to the 

preceding form (3.6) of Liouville's theorem: d~ /J~ =0 From this 

latter derivation of Liouville's theorem it is also evident that the 

equation for the variation of the probability density is equivalent 

to Hamilton's equations. 

Formally the solution of Liouville's equation (5.8) can be written 

8s 

Here it is quite easy to see that ~) involves the same lack of 

miDroscopie information as ~(o) . Indeed the operator e -~L with the 

aid of which one passes from ~(@ to f(~) is a mechanical one (see 

eq. (3.7)) and no loss of information is involved. 

Therefore, the time variation of ~ as expressed by equation 

(3.8) implies no loss of information at all. The initial information 

which we have about our system is preserved durin~ its natural motion. 

4. Entropy and information 

We have said that when one passes from the microscopic descrip- 

tion to the macroscopic one, one loses information. Let us now look 

for a quantity measuring the lack of information which we have about 

our system when its state is described in terms of ~ Using 

information theory it is possible to show that the lack of information 

is given by 

I =-k~ ?~JP (4.l) 
P 

~or systems in equilibrium this expression is identical to the 

statistical entropy if k is Boltzmann~s constant. Indeed, for an 

isolated system in equilibrium, ~ is uniform throughout the access- 

ible region ~ of phase space as a consequence of the postulate of 

equal 8 priori probabilities. Then: ~ = J/W , where W=~4P 
is a measure of the number of microstates in the region_CA Thus 

I... 4 ~,aW~P = k ~M,/. (4.2) 7=k 
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The identification of I with the entropy can be done directly since 

Boltzmann's definition Of the entropy in a microcanonical ensemble 

(which is that corresponding to the isolated system in equilibrium) 

is 

s = k ~ .  (4.~) 

We may also see from expression (4.1) that, among the various ensembles 

which we could choose for representing an isolated system in equili- 

brium, the microcanonic81 ensemble ~ives us the least amount of micro- 

scopic information about the s[stem. 

To do this we c81culste the maximum of (4.1) for the variable 

using the condition 

Thus: 

since from (4.#) 

~ In~f~P = o 

Hence, on .CA one has: 

(4,5) 

(4.6) 

which is the probability density of the microcanonical ensemble. 

Therefore expression (4.3) gives the least amount of information 

about the isolated system in equilibrium. 

Let us now assume ghs% Our system is not in equilibrium, but 

represented by a time-dependent probability density in phase space 

(F~,~ ~) 
at time 

~r ~ (F~ ,~ ;~.) ~ (F~ .~ ~% (4.7) Z 

Using Liouville's theorem, 

~(~ ,T~ ;~o) = f ( F: ~ ;~), (~.8) 

we also have 

The information which we have about such a system 

is given by 



We have written here ~ instead of ~o , because in doing so the 

integral, which is taken over the whole phase space, does not change 

its value. We now change the variables of integration and obtain 

Comparison of (4.7) and (4.10) shows that the information does not 

chanse with time as a consequence of the dynamical evolution of the 

s~stem. This result is the same as what we obtained by looking into 

the formal solution of Liouville's equation (3.11). 

In view of this result we conclude that the entropy of a system 

as defined by (4.1.) cannot chan~e durin~ the evolution. This contra- 

dicts the laws of macroscopic systems. However, Boltzmmnn's defini- 

tion of entropy (4.3) agrees with the Second Principle of Thermo- 

dynamics and gives correct results for systems in equilibrium. 

It is clear that we might study the irreversible behaviour of a 

system from two different viewpoints. Consider, for instance, an 

isolated system in equilibrium with an internal constraint. With 

this system we associate a microcanonical ensemble, and we calculate 

the value of W and - by means of the definition (4.5) - the entropy 

of the system. We then remove the internal constraint and, after 

some time, the system reaches a new state of equilibrium. We asso- 

ciate now another microcanonical ensemble with the system and calcu- 

late the new value of W and the entropy in the new state of equili- 

brium by means of (4.5). It is well-known that the entropy of the 

new state is larger than the initial one: 

~{ > g~ (4.11) 

The reason for this is that the number of microstates competible with 

the final macroscopic situation is much larger than the number of 

microstates compatible with the initial macrostate. Considering 

expression (4.2), we conclude that there is more information in the 

initial situation than in the final one. We have lost information 

when we have changed the microcanonical ensemble. 

We may also try to solve the same problem in s different way. 

Consider, as before, the isolated system in equilibrium with an in- 

ternal constraint. Then the constraint is removed and a non- 
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equilibrium ensemble, characterised by a time dependent probability 

density ~) , is associated with the system. From what we have said 

until now, we know that our information about the system will not 

change with time. Therefore, the entropy will remain constant and we 

cannot describe the irreversible process which actually takes place 

in the isolated system by means of the variation of the density ~l~ • 

Irreversibility is therefore associated with a loss of information 

but this loss of information is not the one implied by the mechanical 

statistical description. The lack of microscopic information in the 

statistical description is entirely contained in ~l~ ; given by (~.i) 

and conserved during the natural motion of the system. To obtain it- 

reversibility it is necessary to introduce an additional lack of in- 

formation. 

In the study of the irreversible behaviour of the isolated sys- 

tem which we did by means of the two microeanonical ensembles, the 

additional 18ck of information was introduced when we changed the 

representative equilibrium ensemble. On the other hand, the study of 

the same problem by means of a non-stationary ensemble has shown that 

the introduction of an additional lack of information is something 

that cannot be done by the system itself during its mechanical evolu- 

tion. 

Let us consider the problem once again in a slightly different 

way by assuming that our isolated system is in 8 given microstate m~ 

at time t=O. At a later time, t, its microstate will be .~ Con- 

sider now the set [mO~ of all microstates compatible with the initial 

macrostate Mo It is evident that at time t the set ~m.] will be 

transformed into the set [m,] Is the set [ml] the same as the 

set of all microststes compatible with the macrostate M~ of the 

system at time t ? Of course not, because the number W(M,)of micro- 

states compatible with M~ must be larger than the number WgHo) of 

microstates compatible with H, . The number of microstates in the 

set [m~ is however equal to the number of microstates in [~oj 

Since the mechanical evolution cannot increase the number of micro- 

states and, on the other hand, the information depends here on the 

number of possible microstates, one must conclude that the mechanical 

evolution never can impl~ irreversibility (loss of information). 
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5. Coprse-$rained probability densities 

The loss of information implied in the change from the micro- 

scopic description to the statistical is enough to derive the macro- 

scopic equilibrium properties of large systems but, on the other hand, 

is not enough to give an account of irreversibility. The reason for 

this failure of the statistical description presented above is that 

the probability density in phase space (which replaces in this des- 

cription the mechanical microstate of the system) is still too fine 

a quantity because its evolution is given by Liouville's equation 

which is a purely mechanical equation. We may think, therefore, that 

we could solve our difficulties if we describe our system by means of 

a less fine probability density - one which does not satisfy Liou- 

ville's equation. 

To define this probability density we divide the phase space into 

fixed small cells and average the original probability density (which 

we shsll refer to as the fine-~rained probability density) ever each 

one of the cells. Let ~ be one of these cells and ~(~) its volume: 

i 

The average of ~){~) on this cell is given by 

= [ ( 5 . 2 )  

and will be referred to as coarse-~rained probability density. We 

assume that the o nl 7 information which we have about our system is 

represented b,7 the coarse-~rained probability density and therefore 

that the fine-grained probability density which would give us much 

more information, is unknown. 

It is clear that 

because ~{ (~) is uniform in the cell ~i • Moreover, if ~ (~) is 

normalized to unity 
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The summations over the cells can be replaced by integrations over 

the whole phase space in the form 

(5.5) L r 

where is proportional to the probability that the re- 

presentative point of the system is in the cell ~= A~"~[" at time 

t. If we now define the entropy 

g = -k [ ~(,~)~P, (5.6) 
p 

in the same way as in (4.1), we may prove as we did for (4.1) that 

foran isolated system in equilibrium the expression for ~@) which 

maximizes (5.6) is ~= 4/W on the accessible region of phase space, 

that is, the microcanonic81 ensemble. Actually, we may describe all 

equilibrium systems by means of ~(%) as well as by means of ~(~) . 

On th@ other hand, it is evident that ~i ~) does not verify 

the Liouville equation since 

Since we do not now have the same mechanical evolution for ~(@) as 

we had for ~(%] , we may hope that the entropy defined by (5.6) will 

be a time-dependent function which increases with time. 

6. Generalized ~-theorem 

To study the time dependence of the above defined entropy, let 

us introduce the quantity 

L 

The function ~ depends essentially on the size and character of 

the cells introduced in our description of the system. Now, since 

~i(%) is uniform within ~; , 

qi 

and we see that the above defined entropy is 
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A different form for the ~-function can be obtained by using the 

definition (5.2) of the coarse-grained probability densities: 

where we have again used the fact that ~dI@) is uniform within ~g 

and denoted with the bar the ensemble average. 

Let us now assume that at time t = to we have information about 

our system which allows us to assig~ a value ~ to the probability 

density of each cell ~ Since this is the only information which 

we have, we construct an ensemble of systems in such a manner that the 

representative points are uniformly distributed in each cell. The 

fine-grained probability density ~o) characteristic of this ensemble 

is therefore equal to ~I~ : 

~o) ~ ~ ~@.  (6.5) 

The value of the z-function at t = to is thus 

If ~) is the probability density corresponding to a stationary 

ensemhle, %~/9~ =O and 9 is constant in time within each cell [~ . 

Therefore ~[4) = ~L%) for all t and the description of the corres- 

ponding equilibriu m system may be made equally well in terms of 

or of ~ However, if 9~/~#0 , the number of representative 

points within each fixed region of phase space changes with time and 

in general ~l~ ~ For this latter case let us choose an in- 

stant of time %~ ~ %, . Considering (6.4) the value of the 

function at i4 is 

~')  = [ r  ~C~,) ~ ~ , )  ~ .  (~.?) 

Now since from Liouville's theorem we have 

d r _ (6 .8 )  
d~ jp 

the difference between (6.6) and (6.7) may be written as 



(6.9) 

where the last equality follows from (5.3). The integrand Q of this 

expression is not negative because its derivative with respect to ~ , 

, (6.lO) 

is positive if ~')~I) , negative if ~I)~,) and zero if 

~@l) = ~(41) . Therefore, m is minimal if 9B,)=~] • But in that 

case, Q is also zero. lience it will be positive if ~,)~P~I) 

We conclude that if ~(~) is different from ~(~ we always have 

This result is very interesting since it tells us that the value of 

the ~ -function is lar~er at the initial time ~. than at some later 

tite %9 • As this function is proportional to the information, the 

inequality just derived allows us to conclude that in passing from 

t~ to t 4 some information has been lost. 

One might think that this ~-theorem is an explanation of irre- 

versibility, because it seems to predict a monotonic decreasing of 

with time, i.e., in view of (6.3), a monotonic increasing of 

entropy. However, this is not exactly the case. To see this, we 

firstly analyse how the information has been lost in passing from to 

to t~. 

We are describing our system by means of the coarse-grained 

prob8bility densities ~(~) The only information which we have 

about the system is provided by ~ , i.e., the average of ~C~ over 

each cell T~ In the case which we have considered our information 

is contained in ~(~o] at t~ and in E~I) at t 4 At to we have 

constructed an ensemble of systems according to our information and 

thus the description provided by this ensemble must be exactly the 

same as that provided by ~{~ , so P~) = ~) . In this case, 

i.e., at time %o we know therefore ~({.~ As time goes on, 
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the representative points move throughout the phase space changing 

the value of the fine-grained probability density ~) for each 

fixed point of phase space. Since we do not describe the system in 

terms of ~) but in terms of ~(~) , our information is not that 

contained in ~,) but in its average over each cell. So 

~,) ~ ~f) and the information contained in our description is 

less than the information given by the ensemble. But from Liou- 

ville's theorem the latter is exactly the same as the information at 

time t@ ; therefore, in the coarse-grained description there is 

less information at time %4 than at time Co 

Let us note, however, that we cannot rigorously establish an 

inequality such as (6.11) for two times t~ and t z different from 

to : 
7 

Indeed, the essential point for the derivation of (6.11) was the 

equality between ~@ and ~) and st present we have not a similar 

equality for ~(4,) and ~i) . 

If we want to establish an inequality such as (6.12) we must 

"forget" our earlier description at time t@ hy means of the ensemble 

of systems, and, by assuming that all possible information about our 

system is now contained not in ~,} but in ~,) , construct a 

different ensemble such that ~'~I): ~,} So we are now in the 

same situation as before and we can obtain the inequality (6.12). 

It is important to "forget" the description at time to , because if 

we fail to do so, the whole possible information at t 4 would not be 

contained in ~4) because we would have in addition the information 

that at to the system was represented by ~(~.) The totality of 

possible information would be contained in ~(11) In this manner, 

we could prove for all times that 

Note however that this behaviour of the ~-function can only be 

rigorously proved if we introduce new ensembles at all times. This 

has the effect of interrupting at every time the dynamical evolution 

of the probability density. This change of ensembles corresponds to 

the change of microcanonical ensembles in the equilibrium statistical 

description of the evolution of an isolated system (see inequality 

(4.11)). 
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I will now present two different methods for interrupting at 

ever V time the dynamical evolution of a mechanical system and so in- 

troducing a loss of information, that is, irreversibility. 

III. THE IRREVERSIBILI~Y OF TH~ BOLTZMANN TRANSPORT EQUATION 

7] The £oltzmann equation 

I will deal firstly with some ideas underlying the traditional 

method for deriving the Boltzmenn transport equation 

+-'~, 9 Z 
FFr 

• U J -  - 

The distribution function [(~,~,~) is defined as 

( 7 . 1 )  

~:(¢ ,~.  ;,~) __ n({) (7.2)  

i.e., the ratio of the number N~) of particles which at time t 

are in a small region of the 6-dimensional ~-space around a point 

(~,~) to the volume ~ of the region. If the total number of 

particles in the system is N, one has 

The quantity ~(~;{)d~-~N~ may be considered as the probability 

that a particle is st the point with coordinates (~.~) in ~-spsce 

If there are no collisions between the particles, then 

( 7 . 4 )  

but if collisions are possible, then there is a non-vanishing dif- 

ference between these values of ~ : 

("~.)C~'4y--_~( ~,~,~+~{ '0 ~¢~)--~(~.~;{) - (7.5) 

In order to calculate this difference one may consider a particle 

within a small region of volume ;~ 8bout ~ and with velocity in 
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~ about ~. In the same region one assumes that there are particles 

with velocities in ~ about ~ which constitute the beam incident 

on the first particle. Then one calculates the number of particles 

of velocity ~ which by collision change their velocities. In the 

same way one can calculate the increase in the number of particles 

with velocity in ~ about ~ due to collisions, and the difference 

provides the rate of change of the number of particles with velocity 

in ~ about V due to collisions. Thus: 

where { , & and [' , ~ are respectively the distribution functions 

of the particles after and before the collisions, ~= I <-~ =~-V'~ 

the modulus of their relative velocities, b the impact parameter, and 

the scattering angle. To obtain the expression (7.6) one must make 

use of a very important assumption, namely that within the integral of 

this expression the probability of having in ~ about ~ two par- 

ticles with velocities between ~ and ~*~ and between ~ and 

~4÷;~ respectively, is proportional to 

This assumption is known as the molecular chaos hypothesis and states 

that the probability of having at the same time one particle about 

({,~) and another one about (F0~) in ~ -space can be replaced in 

the collision integral by the product of the probabilities of having 

separately each particle in these regions of ~-space. Since the 

probability of the composite event is assumed to be equal to the pro- 

duct corresponding to the two simple events, the hypothesis of mole- 

cular chaos states that both events can be considered as statistically 

independent. That is, the correlations between the velocities of the 

particles before the collision do not contribute to the value of 

~9[~9@)a The effect of this hypothesis is the same as that of as- 

suming that the velocities of the particles are uncorrelated before 

the collision. It is clear however, that during the evolution of the 

gas, collisions occur among the particles and therefore, the velocity 

of a given particle depends on its previous history. Consequently 

the velocities before the following collisions must be correlated. 

The hypothesis of molecular chaos is then not a consequence of 

the dynamics of collisions: it seems rather to be incompatible with 

the laws of mechanics. Moreover, one cannot easily understand why 
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this hypothesis has to be verified in the mechanical system. How- 

ever~ the molecular chaos will. appes.r as a fundamental factor in 

irreversibilit~. 

8. Boltzmsnn's H-theorem 

One of the reasons which make the Boltzmann equation so impor- 

tant in the theory of irreversibility is that its solutions verify 

the so-called H-theorem. This theorem was stated earlier than the 

generalised ~-theorem and may be formulated as follows. 

Let us define a quantity 

Then, if ~(~ is a solution of the Boltzmann e@uation, one has 

= '-4 [[I[[C;'E: ~ f'*~If, ~['f:)1 ~ J~ ~' ~, ~d~, 

(s.z) 

(s.2) 

and since the integrand can never be positive, one finds 

4~ 

This result means that the Boltzmann e~uation is irreversible in the 

sense that, for 8ny initial condition, one has 

where ¢ , B ~ ¢ j  is  the Ma~ .e l l -Bo l t zman~  d i s t r i b u t i o n  f u n o t i o n .  Zn- 
d e e d  H(~ i s  a d e c r e a s i n g  f u n c t i o n  o f  t ime  and c o n s t a n t  o n l y  when 

~'~ ~ ~ , i.e., when ~ is the Maxwell-Boltzmann distribution 

function. Since for this equilibrium function the value of H is 

minimal, the H-theorem implies an irreversible evolution of any initial 

distribution function towards the Maxwell-Boltzmann distribution. 

This irreversible behsviour is incompatible with the laws of 

mechanics. Indeed, if for the distribution function of a particular 

~nservative system the H-theorem is valid - and one consequently 
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concludes that the system evolves towards s particular equilibrium 

state - we may imagine a state exactly the same but where the velocitie 

of the particles are reversed. It is then clear - from the mechanical 

point of view - that from this latter "equiZibrium state" the system 

would "irreversibly" evolve towsrds the initial "non-equilibrium" 

state. 

It is important to note, however, that the H-function (8.1) has 

only the property (8.3) of being a decreasing function of time if the 

distribution function through which it is defined is s solution of the 

Boltzmsnn equation. Now, the solutions of the Boltzmsnn equation do 

not evolve in time through mechsnicsl equations but, instead, through 

the Boltzmann equstion which is not an entirely mechanical one, since 

in its derivation one deals not simply with mechanical collisions - 

one has to introduce the molecular chaos hypothesis which is not 

mechanical. Since this is the only non-mechanical hypothesis, we must 

conclude that it is responsible for the irreversible behsviour of 

systems described by means of Boltzmann's equation. 

Therefore, if we want to study the conditions for irreversibility, 

we must analyse the meaning of the hypothesis of molecular chaos. To 

this end I will present s different derivation of the Boltzmsnn equa- 

tion by means of which we "~erive" the molecular chaos. This deriva- 

tion will be "as mechanical as possible", but we shsll see that i__~n 

order to obtain irreversible equations it is necesssry to introduce 

some hypotheses. The character of these specific hypotheses, whether 

mechanical or not, is, in my opinion s question of language. I prefer 

to ssy thst they are not mechanical. They are, however, very plaus- 

ible. On the eontrsry the hypothesis of molecular chaos is clesrly 

a non-mechanical assumption. 

9. The BBGKY hierarchy 

We describe our system (s gas) by means of a statistical ensemble 

which is not in equilibrium and which is defined by s probability 

density in phase space (6N-dimensional if the system consists of N 

point particles without constraints) which depends expl~citly on time. 

The probability density satisfies Liouville's equstion 

9~ 
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It is important to distinguish between the Liouville equation 

(i.e. the evolution equation of ~(~) ) and the equation expressing 

the dynamical evolution of a function representing a microscopic 

quantity and not depending explicitly on time: 

~_ I ~ ( r , . f , ~ )  ----i. t,,, I~ (~'~. ."F%) . (9.2) 

Here~ ~ and y~ represent the positions and moments of the N 

particles at time t. If at t=O they are respectively ~ and ~ 

(9.5) 

where ~(F~,~ ~%~ is the evolution iope.rator of the system. If 

the system is conservative (i.e. its Hamiltonisn function is inde- 

pendent of time) ~] has the form 

&~) = e ~L~ . (9.4) 

The re fo re 

r~ - 8. ro  , P,  = F .  ( 9 . 5 )  

The formal integration of (9.2) gives 

(9.6) 

or, using (9.5) 

Applying this property to the probability density, we also have 

l : t % .  ~ ,  

which is similar to (9.6), but in (9.8) ~only acts as a constant 

parameter. On the other hand, by formal integration of the Liouville 

equation (9.2) one obtains 

~C~. ~.~] _ e-~L- ~(F~ F~ ~o). (9.9) 
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Making r=i in (9.8) and ~-~. and ~=~o in (9.9), one finds 

3'&,~ "F" = = 

(9.10) 

which is the expression of Liouville's theorem. It is important to 

note that (9.6) and (9.8) are valid for any phase function dependin~ 

or not explicitly depending, on time. But (9.9) and (9.10) are only 

valid for the probability density in phese space because it is only 

to this function that Liouville's theorem is applicable. 

We assume that the particles of our system interact only with 

each other and through a repulsive finite-range potential 

--~0~-~I) The force between two particles is 

then 

9 fi 
o only i f  I~-F~I ~ ~ (9.11) 

being the range of the interactions. The Liouville operator is 

So l v i ng  equat ion  (9 .1 )  i s  e q u i v a l e n t  to s o l v i n g  the equat ions o f  

mot ion o f  the system, a very  complex problem. Indeed, to do t h i s  i t  

would be necessery to know ~(~) , which involves very detailed in- 

formation about the microscopic state of the system. This information 

is neither neeessar,y nor helpful. It is not necessary because the 

transport coefficients (and, in general, every important property of 

the system) can be expressed in terms of the phases of a very small 

number n of particles (n ~ i, 2). And, on the other hand, it is not 

convenient to have too much information at one's disposal because it 

is the lack of microscopic information that gives the irreversibility. 

The reason for this is that irreversibility is characteristic of the 

evolution of the macrostates and not of the microstates. 

We need, therefore, to reduce the information contained in the 

probability density. To this end, we introduce the reduced distribu- 

tion functions ~'~ (~) , through integrations of ~. (~) : 

P 
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where V is the volume occupied by the system and the integrations 

with respect to the ~'~ are taken over V. Here we have used the 

notation 

¢9.1e 

From the normalization of @~(~ 

we deduce the normalization of F. fl) : 

It suffices now to integrate formally the Liouville equation (9.1) 

for particles n+l, n+2, ..., N to obtain 

(9.17) 

where 

and ~ is the LiouvJlle operator for an isolated system of n par- 

ticles (that is, the expression (9.12) replacing N by n). Equation 

(9.17) cannot be solved for F.~4~ without knowing F.+a~ , which 

is not known without solving a similar equation, etc. Therefore, in 

order to determine F.~ it would be necessary to solve the whole 

set of coupled equations of type (9.17), known as BBGKY-hierarch 7 

(Bogolubov, Born, Green, Kirkwood, Yvon). The exact solution of the 

hierarchy is therefore equivalent to that of the Liouville equation. 

It may seem then that there is no advantage in writing Liouville's 

equation (9.1) in the form of the hierarchy (9.17), because we have 

not lest information. However, the hierarchy is better suited than 

the Liouville equation to the removal of the undesired information 

as we shall now see. 
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i0. Thermodynamic limit 

The average particle density of a system consisting of N par- 

ticles in a volume V is D = N/V. If the system is finite (i.e. if 

it has a finite number of particles within a finite volume and the 

energy of the system is finite) Poincar@'s theorem is applicable and, 

consequently, for almost every initial state the system evolves in 

such a manner that after a finite time it will be in a microscopic 

state as close as desired to the initial one. In other words, accord 

ing to Poincsr@'s theorem 9 finite system evolves by c~cles of finite 

duration. The duration of a cycle is called recurrence time and when 

N is large it is of the order of eN° 

Clearly, by virtue of this theorem, a finite system cannot be 

irreversible in the sense that, from a given initial non-equilibrium 

state, it would evolve towards an equilibrium state. According to 

Poincsr@'s theorem, when the system reaches the equilibrium state, 

it continues evolving until it again reaches the initial state. This 

is actually so, but the macroscopic systems 8re so large that the re- 

currence time is enormously large (of the order of 40 ~°i° ) and the 

system never reaches the initial non-equilibrium state starting from 

the "equilibrium" state. For studying a macroscopic system we have 

to introduce in our equations the condition that both N and V are 

very large. In this manner, the recurrences due to Poincar@'s cycles 

do not appear. Actually, N is of the order of Avagadro's number, 

I0 z~ and V is very large when compared to the volume of each mole- 

cule. 

The condition that the system is large is introduced through the 

so-called thermodTnamic limit: 

- ~  , V--- ~ , ~Iv -- b [~{~. (lO.1) 

In the thermodynamic limit D is kept finite to avoid introducing 

in the equations governing the system other than those effects due 

exclusively to the large number of particles and the large size of 

the system. So, when introducing the thermodynamic limit, the exact 

equations derived from the Liouville equation are valid for 8 system 

which has the same properties as those described by (i0.i) but which 

is infinitely large. 

One of the differences between the large and the small systems 

will be in the role played by the surface effects due to the walls of 
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the container. These may be relevant in the case of a small system; 

but if the system is large and the surface effects are proportional 

to the area of the walls, they will be negligible when compared to 

the volume effects, as the ratio of surface to volume of a "normal 

system" tends to zero for an infinitely large system. For this reason, 

since the surface contribution is zero in the thermodynamic limit, it 

is possible to choose arbitrary boundary conditions. In statistical 

mechanics it is common to deal with periodic conditions. For instance, 

integrating by parts and using periodic boundary conditions at the 

limits of the phase integrations, we have 

for any phase functions A and B° This property is very often used, 

as we have done already in deriving the BBGKY-hierarchy. 

Another remarkable difference between a large and a small system, 

in the case when the particle interactions are of finite range, ap- 

pears in integrations of type 

v ~ 

In general, the ~ -kntegratkons are extended to the whole volume V 

of the system. However, because of (9.11), in expressions such as 

(10.3), the integration is restricted to a sphere of radius ~ which 

is finite in the thermodynamic limit. Since all phase functions are 

summable in phase space, the expression (10.3) is zero in the thermo- 

dynamic limit. 

By introducing the thermodynamic limit into exact expressions 

we obtain expressions "exact in the thermodynamic limit", but these 

will not be exact for a macroscopic system because it is not infinite- 

ly large. In other words: by means of the thermodynamic limit we 

introduce an approximation in the study of a macroscopic system, con- 

sisting in the elimination of some terms, i.e. a loss of information. 

As we have already said, this loss of information is responsible 

for a kind of irreversibility, that is, for the removal of Poincare's 

cycles. However, this is not the only kind of irreversibilit$ pre- 

sent in macroscopic systems. In fact, an infinitely large mechanical 

system does not evolve by cycles but this does not imply the validity 

of an H-theorem. So that in order to obtain irreversibility it is 

necessary to introduce more assumptions. 
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ii. .A. new hierarchy 

The solution of the BBG~f-hierarchy provides the reduced distri- 

bution functions F~(~,~"%~) defined in (9.13). We will obtain 

now s hierarchy for the momentum distribution functions 

J 

which are proportional to the probabilities of finding the particles 

i, 2, ..... n with momenta between ~" and ~"+~ independently of 

their positions. To this endl we use the so-called projection 

operators. We define 

~.,,.-= ~-., 

which is 8 shorb notation for saying that ~ acts on any phase 

function A (~.~.;z) as follows: 

(ll.3) 

In particular, according to (ll.1), we have 

(ii.4) 

The name of projection operator takes its origin from the fact that 

~ is an idempotent operator: 

Moreover, if we define the operator (i-~) by 

_ = (n. 6) 

we see that it is also a projection operator: 

Also, ~ and ( l - ~ )  are orthogonal: 

(ll.?) 
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(ii.8) 

and, in addition: 

£,,,, -,. (ii.9) 

If we project the BBGKY-hierarchy (9.17) with ~ (that is, 

multiplying both sides by ~ ) we get in the thermodynamic limit 

(li. iO ) 

where 

(ll.li) 

where we have considered the set of n particles to be far from 

the walls of the container, so that 

~,~,{ [~41 ---- 0 . (11.12) 

In the same manner, by projecting the BBGKY-hierarchy with ~-9~) , 

we have, in the thermodynamic limit 

The set of equations (ii.I0) and (ii.13) is equivalent to the BBGKY 

hierarchy (9.17) in the thermodynamic limit, because ~-~ =~*~ . 

We can now formally solve for ~.(4) in equation (11.13) and taking 

the solution for n+l replace it into equation (ii.i0). We obtain 

9[, 

9% o 9r (iI.i~) ÷ 

where we have defined the operators 
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2 

We will not use equation (ii.13) any more but only equation (ii.14). 

Since we will not deal with both (11.13) and (Ii.14)~ we will lose 

information about the behaviour of the system. This lack of infor- 

mation is due neither to an approximation nor to an assumption. It 

is merely due to the fact that we are not interested in knowing the 

whole reduced distribution function [~ but only s part [~ of it. 

Therefore, this lack of information does not impl [ irreversibilitz. 

Equation (11.14) is exact in the thermodynamic limit. Let us now 

neglect its last term which, for finite times, is of the order of 

D 2. This term is studied in detail elsewhere. For the moment it is 

enough to note that, since we are interested in dilute gases, D << i, 

and we may hope that the contribution of the last term in equation 

(14), if it is not zero, will be very small. The equation 
% 

9~I~_=D[tK~.,~)~.~(~_~)~ + Dk~.~4,~)~,(o) (11.17) 

is actually a hierarchy very similar to the BBGKY-hierarchy. The 

most important differences between the two hierarchies is that (11.17) 

gives the evolution of the momentum distribution functions instead of 

the reduced distribution functions. Another difference is that 

(11.17) contains a term which depends on the initial conditions of 

the system. 

According to the prescriptions of the statistical mechanics 

method which we are developing, we are free to choose the initial con- 

ditions to be imposed on the system. We may prepare the system at a 

given time and then we must allow it to evolve mechanically from the 

initial state. 

We might assume that the system had no correlations st all at 

t=0, but it is enough to assume that the correlations have 8 finite 

range at t=0 and that the system is Jniti811~ spatiall$ uniform. We 

write 
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which defines the correlation function ~(,] at the initial time, 

and our assumption implies that 

(11.19) 

An extra assumption (which is not necessary but which we make for the 

sake of simplicity) is that ~a(o) is independent of the momenta. Now, 

if the system is initially spatially uniform, F~(a) is invariant 

under a spatial translation and, therefore, FI(o) must be independent 

of F Then, according to (ii.i) F~{~) = [~(e) • Instead of 

(11.18) we may therefore write 

~Ce~,g~io) = n g(Fiio] [ t  + ~(~,o) (ll.2O) 
j:i 

and by using (ll.l) again, 

In the thermodynamic limit this equation reduces to 

j:I 

as, according to (11.19), the integrations in (11.21) corresponding 

to the relative coordinates of the particles, must be taken over the 

sphere of finite radius ~ and then the last term vanishes in the 

thermodynamics limit. Our initial conditions imply, therefore, that 

the momenta of the particles are not correlated at t = O. In other 

words: ~(~) factorizes in the form (11.22). From the definition 

(9.13) of F~(~ 1 and the definition (11.20) of ~0] , it can be 

obtained that 

= ; (11.2 ) 

and from the definition of ~(~ and (11.20) and (11.22), 

(11.24) 

Therefore, the hierarchy (ii.17) may be written as 
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~C. (~) : b [.., (~-~ J ~ .  D K.,.., W( . .  (o) 1-., (~) 
° (11.25) 

since it is possible to show that in the thermodynamic limit 

where 

Kd'"*')(@) = ~ L ~p.. ,  r . . ,  . - -  ( 1 1 . 2 7 )  

and where L (,~'~I'I) is the Liouville operator corresponding to an 

isolated system consisting only of particles j and n+lo 

12. Introduction of the, irreversibility 

Let us introduce new time variables defined by 

~ =  DE . Q - =  Dz: (12.l) 

and let 

( 1 2 . 2 )  

be the momentum distribution function ~ (~) in the new time scale, 

where we use s instead of t. The hierarchy (llo25)now reads 

$ - , .  

~:| o 9~" 
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where we have made a partial integration and used the fact that 

Kci'  O(o) = o (12.4) 

We emphasize that this is exactly the same hierarchy as (11.25). To 

derive the Boltzmann equation we must now introduce a new factor of 

irreversibility. Let us see why. 

When we considered the thermodynamic limit we removed from our 

system the possibility of cyclic evolution as required by Poincar@'s 

theorem for finite systems. The thermodynamic limit is then an impor 

rant factor for the irreversibility of the macroscopic systems. But 

it is not enough to ensure that the system will have an irreversible 

behaviour. Indeed, if we change s into -s, ~ into -~ and 

~ into -~ , we see that the functions ~C~,i$)=~(-~-~ verify 

the same equation as the f~(~;~) . That means that the equation 

(12.3) is reversible, that is, its solutions cannot verif~ a ~- 

theorem. In fact, we may reverse the velocities of the system and 

obtain a reversed evolution with an increase of the ~-function. 

Both evolutions, the direct and the reversed one, would be possible~ 

because the functions ~(~S) and ~(~s) are solutions of the 

same equation (12.3) if we choose the initial conditions in such a 

manner that (~o)=~(~"~o) ~ i.e. as an even function of the mo- 

ments. 

On the other hand, we are interested in a dilute gas in which 

only the binary collisions are relevant. We have to consider there- 

fore the limit O--~ O In equation (11.25) we may see that, for 

finite times t~ the limit D-~ o would impl~ that ~ (~;£) re- 

mains constant. Actually [~) changes only through the collisions 

of the particles. Therefore, to have a change in the value of ~(~} 

a time interval of the order of the average duration between two 

successive collisions is necessary. 

Thus, t must be of the order of %¢ (¼1{c~I) and, on the other 

hand, one has that £¢ is of the order of the inverse of D, because 

for smaller densities the mean free path of the particles and hence 

~ a r e  larger. Therefore, to see the evolution of ~(~£} 

when ~--~ o , it is necessary to allow that at the same time 

~--~ ~ , in such a manner that ~ % / ~ - ~  . In other words, 

the condition that the gas is a dilute gas must be introduced into 

(11.25) through the limit: 
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which in the time scale (12.1) is equivalent to taking equation 

(12.3) in the limit ~-~ 0 , s finite. 

We shall later show that 

0 = k (B) n 
[---~.o 

(12.6) 

<12.?) 

where ~(pj.y~) is any function of the momenta of the particles 

j and k and ~ (~,k) is the Boltzmann collision operator. With 

these two relations, equation (12o~) may be written, in the limit 

~-~ O ) as 

9S j:I 
(12.8) 

This equation is irreversible and is the final result of our deriva- 

tion. To obtain the Boltzmann equation from it) it suffices to note 

that the solution of (12,8) with the initial condition (11.22) is 

j;1 

where {I (~ %S) satisfies 

£,~) t 

9s 

Indeed, for a given initial condition (11.22) the equation (12.8) 

has a unique solution. Since (12.9) satisfies (12.8) if (12.10) is 

verified, the expression (12.9) is the solution, and equation (12.10) 

must be verified. Equation (12.10) is the Boltzmann equation. 

I emphasize that (12.9) is a factorization for any time, that 

is, it expresses the same thin~ as the h~pothesis of molecular chaos. 

The main difference between our derivation of the Boltzmann equation 

and the traditional one is that we do not postulate molecular chaos, 

but we derive it by means of the limit (12.5) which introduces the 

irreversibility. 

Why does this limit introduce the irreversibility? Before 

answering this question we must prove properties (12.6) and (12.7). 
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Their proof will give us the answer. 

13. 

the variables 

particles j 

Bina,ry co,lli, sions 

We start hy writing the expression ~'K)(~8(~%~K) in terms of 

(~,~b) corresponding to the centre of mass of the 

and k and of 

r = ~ - c ~  , = - ~ / (13.1) 

which are the relative coordinates. We obtain 

(13.2) 

-if 

We use now the identity 

o 

(13.a) 

valid for any operators A and B, to get 

o ~F 'ap 

Using the same n o t a t i o n  as i n  ( 9 . 3 ) ,  ( 9 .5 )  and ( 9 . 6 ) ,  t h i s  e x p r e s s i o n  

may be written ss 

0 

If we choose a coordinate system such that the positive axis z is in 

the direction of ~ , this equation reads 
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i 

~ - I ~ l ~  

(15.7) 

Due to the finite range of the forces between the particles the 

i ntegrand of this .ex.press.ion is different from zero only in an inter- 

val of time ~a~ ~/~/]~I , where m~ is the duration of the col- 

lision. On the other hand, for the same reason 

where ~( is larger than unity and ~ (independent of t) is the 

relative momentum before the collision° Also 

where ~o is now independent of t and z and dependent on the im- 

pact parameter b=(~,~) JIL and on ~ which is now the relative 

momentum after the collision. Therefore, for ~ ~ ~ ~2~ and ~2~¢c 

according to (9.11), (13.8) and (13°9), the expression (13.7) may also 

be written in the form 

- .  - °(x, I , ~ '  

But using (13.8), if % >Wr¢ we have 

and there fore ,  i n t e g r a t i n g  b o t h  sides of  ( i 9 .10 )  w i th  respect to Pk 
x and y, the right-hand side gives #/1[I times the right hand 

side of (13.2) when ~ >~(~c . Hence, when t -~ ~e , 

K d,~ A'-" ~P~,~'4 : k'~"~( ~ >'~,) ~ C~'j ,~'~) 
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Thus, we have proved the property (12.6). 

On the other hand, by using the coordinates of the centre of 

mass and the relative variables (13.1), one may write 

where the integrand.is different from zero only if I~I & ~ But 

then, for times which are large enough, we will have 

and, according to (11.].9), ~(i~-~l;~)=O Thus~ we have proved the 

property (12.7), and completed the derivation of the Boltzmann equa- 

tion, since together with (13.12), equation (12.10) reads 

14. Molecular chaos 

We have seen that the introduction of the thermodynamic limit 

and the limit (12.5) into the Liouville equation (or the BBGKY hier- 

archy), which is reversible, allows us to obtain the Boltzmann equa- 

tion, which is irreversible, and moreover, the property (12.9) gives 

us molecular chaos at every time s. The thermodynamic limit has 

already been briefly discussed and we have seen how it removes the 

recurrences due to the Poincsr@'s cycles. We have also proved that 

the limit (12.5) removes the time reversibility of the mechanical 

system, but we have not discussed why this is so, and we have not 

yet investigated the meaning of this limit. 

When we discussed the meaning of the evolution of the entropy 

of an isolated system we arrived at the conclusion that to obtain an 

increase in entropy it is necessary to introduce more and more micro- 

states during the evolution of the system, Also, when we discussed 

the possibility of s generalized ~-theorem, valid at all times, we 

saw that 5t is necessary to introduce new ensembles for every time. 

Both conclusions can be expressed by saying that to obtain 
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irreversibilit~ it is necessar ~ to interrupt the dynamica~ eyolution. 

This interruption ignores the exact evolution and introduces in our 

problem a lack of information. 

On the other hand let us remember, that the factor giving irre- 

versibility in the traditional derivation of the Boltzmann equation 

is the hypothesis of molecular chaos, i.e. the assumption that there 

is no correlation between the particles. We have also said that after 

two particles collide, they remain correlated. Now, assuming that 

they are not correlated in the next collision implies that one "must 

forget" what happened in the former collision. In this manner, in- 

stead of having a collision constrained by the preceding ones (in the 

sense that the collision parameters are imposed by the earlier col- 

lisions), we have a totally independent collision. This independent 

collision may be realised in more ways than if it were constrained. 

Thus we understand how the assumption of molecular chaos leads to 

irreversibility; it is equivalent to introducing successively into 

each collision more and more arbitrariness, more and more entropy. 

We may ask how in our previous mechanical derivation we could 

get collisions not constrained by the earlier ones. The decisive 

factor introducing irreversibility was the replacement of expression 

(15.2) by expression (15.12) in going from (12.3) to (12.8). Let us 

examine both expressions. Expression (13.2) allows one to follow 

the evolution of the particles j and k along their continuous 

tra0ectories. On the contrary, expression (13.12), which is 

valid only for times ~ ~ c  , follows the evolution of the particles 

before and after each col!is~on , but not during the collisions. That 

means that in the Boltzmann equation (13.15) the rate of change of 

(~;S) is not given as a continuous succession of values of this 

function at all times, but instead as a d~screte succession of these 

values at times when there are no collisions. 

To pass from (12.3) to (12.8) we introduced the limit (12.5) in- 

to (12.3). This limit is therefore responsible for the molecular 

chaos at all times. It is clear that on the time scale m= D~{/@~ 

the duration of the collisions ~¢ becomes negligible when ~ is 

large. So that, when we are dealing with times s we can ignore 

intervals of time of the order of wc The dynamical evolution of 

the system is thus interrupted. We could say that there are "more 

instants" of time in the Liouville equation than in the Boltzmann 

equation. Irreversibility is due to this loss of infoi~ation. 
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IV. THE IRREVERSIBILITY OF OTHER EQUATIONS 

15. The Prisosine-Brout equation 

I will now hriefly discuss in the same manner some other irre- 

versible equations. Let us begin with the Priso6ine-Brout equation. 

We consider a system with a Hamiltonian function 

N N 

~wk 

Here ~o is the gamiltonian function of a system of free particles 

and H' ,nay be regarded as a perturbation due to the forces between 

the particles. We assume that the perturbation is very weak and, 

thus, the parameter ~ measuring the strength of the perturbation 

is considered to be small. The Liouville operator corresponding to 

the Hsmiltonisn (15.1) may be written ss 

L = L ° + ,] L' (15.2) 

and the Liouville equation for this system is 

! -_ ° + fCF , F': (15.3) 
9~ 

We now follow Zwsnsig's method and introduce a projection operator 

_ 4 I~Ft.. 

such that the momentum distribution function 

(15.4) 

[([':~) is give~ by 

(15.5) 

By projecting the Liouville equation with P and (l-P) and using 

techniques similar to those used ebove for deriving the hierarchy 

(11.14), after some calculation and using additional assumptions on 

the behsviour st t=0, one finds: 



192 

' )4: o 
(15.6) 

One easily sees from this equation that there is a characteristic time 

of the system related to the coupling parameter ~ Indeed, if 

is sufficiently small this equation shows that ~u;~) is a slowly 

varying function of t. (It is clear that in the case that ~=0 

the momentum distribution function of 8 system with Hamiltonian func- 

tion 

~:1 2 ~  

does not change with time). Thus one can define for our system a 

time t c such that for t ~ tc, the momentum distribution func- 

tion may be regarded as constant. This time t c is in this case of 

the order of ~-z and therefore it is convenient to introduce a 

time scale 

=s (15.8) 

and deal with times s instead of t ; for small values of ~ the 

function 

(15.9) 

has 8 rate of change measured on the scale (15.8) larger than that 

measured on scale t: 

9s 
(15.10) 

Taking in equation (15.6), the limit of ver~ weak coupling 

---~ O , ~ ~ ~O , ~Z~ = S finite, (15.11) 

which is equivalent to taking the limit ~-~o in equation (15.10), 

one obtains 
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~S ',o 
(15.12) 

Or, written on the scale t, 

(15.13) 

Equations (15.6) and (15.10), which are called "pre-master equs- 

tions"~ are reversible ; equations (15.12) and (15.~3), which are 

called "master equations" are irreversible. The irreversibilit~ is 

here introduced b 7 means of the limit (15.11) which interrupts the 

d~namic81 evolution of the system. Let us note that in the deriva- 

tion of the Prigogine-Brout equation (15.12), which we have sketched, 

the introduction of the irreversibility was carried out in a way 

similar to that used in our treatment of the Boltzmann equation. 

Using the weak-coupling limit (15.11), we have neglected the detailed 

process of changin5 of the moments and we consider only the rate of 

change of the momentum distribution function during time intervals of 

the order of t 
C 

16. Lan~evin and Fokker-Plsnck equations 

fo rm 

The Langevin equation for Brownish motion may be written in the 

a~ (16.1) 

where ~m(~ is the momentum of the Brownian particle at time t, 

is a friction coefficient and R(~ is a rapidly fluctuating, 

stochastic force. This equation can be derived, by means of projection 

operator techniques~ from Newton's equation 

where L is the Liouville operator of the system consisting of the 

Brownish particle and the particles of the fluid. As a first step one 

may derive the Mori equation 
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~ ....% 

o 

(16.3) 

which is just ~ (16.2) equation written in another, equivalent form. 

There the tensor ~(~)is related to the force ~(%) through 

~ ( . + ) =  ' <+~+.~)> ,  (1+.+) 
me, kT 

where ~1B is the mass of the Brownisn particle, k is Boltzmann's 

constant, T the absolute temperature, and <~[~)~ the correlation 

function of R, which is given by 

-- #+('-+J'-(- ' +',,-<F,,. < > ) .  P+- Me, k---T 
(16.5) 

Here, P is the projection operator 

-~--- + +, ,+'<F,-- -~-+ I ': ,,,, +~.T - ,,,,.T ++" [++'"" <+ p 
(16.6) 

with the integration taken over the phase space of the whole system 

of Brownian and fluid particles, and with ~% the canonical distri- 

bution function of the whole system. 

The Mori equation is reversible as is Newton's equation. The 

first term on the right-hand side of equation (16.3) is not s dissi- 

pative term, and the force R~ is not stochastic. 

If we use the notation ~I~B=~ ~, ~J=~a~ and ~8=~8V-~ , we 

may write the Mori equation as 

0 

Now we note that the time interval necessary for a given change in 

the velocity of the Brownian particle to occur (for a given mean 

force exerted on it by the fluid particles) is proportional to its 

mass. When the mass of the Brownisn particle is much larger than that 

of the fluid particles, there is a characteristic time ~ such 
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that for times t ~ t c no appreciable change of v-'~ is seen. 

0nly the various collisions between the Brownian particle and the 

~luid particles taking place durin5 time intervals ec are able 

to change V5 appreciably. We therefore introduce s time scale 

S = ~*~ in which the typical character of Brownian motion can be 

exhibited. With this new time scale the Mori equation reads 

a ¢ ~ )  i a~ 
o 

where 

We take now the Brownian limit 

and obtain 

as 
= - '(~),h - V,~ (~) + a rs) 

@ 

(16.11) 

or, with the former time scale 

at: 
(].6.12) 

Note that 

(16.13) 

is a constant and therefore the first term on the right-hand side of 

(16.12) is a dissipative term. Equation (16.13) expresses the fluc- 

tuation-dissipation theorem for this case, and one sees that 
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and ~(z) is s fastly-fluctuatin~ force. 

An analogous limit must be employed for deriving the Fokker- 

Plsnck equation 

~ L~ 
(16.1~) 

from the Lebowitz-R~sibois e@uation 

I 4+ o ~P~ 
(i6.16) 

which may be derived from the Liouville equation by using projection 

operator techniques. In (16.15) and (16.16) ~(+) is the reduced 

distribution function for the Brownian particle. 

17. The Choh-Uhlenbeck e@uatio.n 

Let us return now to our derivation of the Boltzmsnn equation. 

The substitution of the formal solution of (ii.15) for into 

(ii.i0) allowed us to obtain (Ii.1%). If we now substitute this solu. 

tion of (11.13) into (Ii.i~) we get 

• f 

~r~l _ ~I ~ , ~ , c ~ .  ~ _ ~  + b~ I ~ . , . ~  [~c~-o~ %E o 9 ~  9 
0 

÷ 

0 

(l?.l) 

where 

V.~oO 
0 

-~ C, ~-~) L.~z <17.2) 
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The structure of equation (16.1) is quite similar to that of (ii.14). 

The primary difference between them is that the terms, which for finite 

t are of the order of D 2 , have been written here in the same way as 

those of order D. In addition, we have in (17.1) a term of the order 

of D 3. Iterating [ times by this procedure gives 

(17.3) { 

where 

x { " {i~L.,,~ 
=1 L'~,-, Je raJ  

Here, 'E°=O.  The i ndex  "o rd "  deln_otes t h s t , t h e  p roduc t  (wl%ieh i s  u n i t y  
i f  wl-_ L ) i s  o rdered  from le_ft  to  r i g h t  acco rd i ng  to i n c r e a s i n g  va l~es  

of k. Equations (17.1) and (17.2) become respectively (17.3) and 

(17.4), for the particular case when ~--2 Iterating indefinitely 

by this procedure (i.e. if ~ ) we obtain 

9÷ ~'-, 

All these equations are exact in the thermodTnamic limit. 

In particular if n=l, for times @72W~ and neglecting the term 

which for finite times is of the order of D 3, equation (17.1) takes 

the form 

[ D G (176) 

where ~1,%(~) is given by (11.15) and ~1,3(~ is given by (17.2), in 

the case n=l. For times t such that ~>~ra , k"l,z (~) becomes the 

Boltzmano collision operator and ~I,3(~ may be written as 
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. Iz,~) z -i{L d'U 
_ E pzol , )g,{L 

(') E''') C e "'')- L "'O ( ' ' ' )  

(17.7) 

~ ~ ° 

This operator will be called "triple collision operator". We see, 

choosing the initial conditions which we assumed in de:riving the 

Boltzmann equation, that there is no contribution in (17.6) due to the 

initial conditions on the equation for the rate of change of ~(~ 

However it cannot be proved that the solutions of (17.6) satisfy exact- 

ly the hypothesis of molecular chaos at every time. 

Exoanding the functions ~(~-~) and ~-~ involved in (17.6) 

in a Taylor series around ~= 0 , and neglecting the terms which for 

finite times are of the order of D 3, or smaller, equation (17.6) may 

be written in the form 

9A(-~_._]} : DK',,2 (-~).(',(4) ÷D~KTC~JG('~) (17.8) 

The operator 

k'T (J4 = 

KT~ ) is the Choh-Uhle~beck operator 

a'-_j 

(17.9) 

Equat$0n (17.8) is an irreversible eguation. The justification for 

neglecting the various terms in arriving at this equation is given 

elsewhere. The important point is that we have obtained an irrever- 

sible equation by considering only times ~ ~2~ ~ so that e~ation 

(17.8) is not valid for all times. We thus interrupt the continuous 

evolution of the system and look into it only at discontinuous instants 

of time. In this case we do not take a limit such as (12.5), because 
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by doing so we would get the Boltzmann equation. However, in con- 

sidering times ~>2~Z¢ we are employing a certain kind of time scale 

just as in the case of the irreversible equations which we studied 

above. 

18. Final remarks 

In the derivation of the irreversible equations which I have pre- 

~ented to you there are some common points. Let us summarize them. 

The first point is that we deal with !erie systems. The size of 

the system is introduced either through the thermodynamic limit (as 

in the case of the Boltzmann equation) or by considering that there is 

sn equilibrium distribution function and 8 temperature in the system 

(as in the case of the Langevin equation). By considering large sys- 

tems we remove the recurrences due to Poincar@~s cycles. 

The second point is that there is always s characteristic time 

(or frequency) associated with the system. We have denoted this time 

by t c. This time is related to e characteristic parameter of the 

system (D, %~ ~r m~ /m~) which is assumed to take small values. The 

rate of change of the studied function (the momentum distribution 

function, or the momentum of the Brownian particle) is proportional 

to the characteristic parameter and thus, for small values of it, the 

function is a slowly varying function of time t, and it is roughly 

constant in any interval of time of 8 duration of the order of 

~ ~ In order to see an evolution of the system it is necessary 

to consider times ~>~ 

The third point is the introduction of 8 new time scale S ~-%/6~ 

Then we take the limit considering the characteristic parameter to be 

very small and the time t large: 

finite. (18.]) 

This limit introduces the irreversibility because it interrupts the 

dynamical evolution of the system in 8 special way. Indeed in pass- 

ing from one instant s to another, we do not consider in detail the 

exact evolution of the system. In the case of the Boltzmann eq~ation, 

for instance, the passage from one time s to another is not made as 

a consequence of a specified collision. Perhaps this is better seen 

in the case of Brownish motion, in which the passage from time s to 

another time is not made as a consequence of one collision between the 
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Brownian particle and one of the fluid, but as a consequence of the 

many collisions between the Brownian particle and the particles of 

the fluid. Indeed, during the time t c many fluid particles collide 

with the Brownian particle and the change of velocity of the latter 

is the result of these very many collisions. 

Another common point in the derivation of the irreversible equa- 

tions is the use of projection operator techniques. This is a matter 

of taste and is not required for irreversibility. 

We conclude therefore that we cannot derive irreversible equations 

from reversible ones if we do not force the irreversibility, because 

the dynamical evolution cannot introduce the irreversibility by itself. 

This forced introduction of irreversibility has been made here bY 

interrupting the djnamical evolution by considering a time scale such 

that in the passage from one instant to another some amount of infor- 

mation about the detailed evolution is lost. This is done by means 

of a hypothesis, namely that the limit (18.1) needs to be considered. 

(In the case of the Choh-Uhlenbeek equation this limit is not taken, 

but a similar hypothesis is introduced in considering only times 

larger than Z~r~ ). 

We have not studied here the properties which s system must have 

in order to behave irreversibly, i.e. the structure of the exact re- 

versible evolution equations of the system, which when considering a 

limit such as (18.1), give rise to irreversible equations. Our aim 

here has only been to show how irreversibility must be forced and how 

it is a consequence of some loss of informabion during the dynamical 

evolution of the system. 

i gratefully acknowledge the aid given to me by Prof. Dr. W. 

Smith, who read this manuscript, and by Miss P. Gandia, who prepared 

it. 



201 

REFERENCES 

For the latest ideas of the Brussels group on the mechanical 

theory of irreversibility, see 

I. Prigogine, Acta Phys. Austriaca, suppl ~ (1973) 401. 

I. Prigogine, C. George, F. Henin and L. Rosenfeld, Chem. Seripta,~ 
(1973) 5- 

For our sections 2 to 6, see 

R-C. Tolman, "The princples of Statistical Mechanics", Oxford 1962. 

R. Jancel, Foundations of Classical and Quantum Statistical Mechanics 
Oxford, 1969. 

For our sections 7 and 8, see 

K. Huang, Statistical Mechanics, New York, 1963 

For the thermodynamic limit, see 

P. Mazur and E. Montroll, J. Math. Phys., ~ (1960) 70. 

H. Wergeland, in Sit~es International School of Physics, May 1974, 
New York, 1972. 

For our sectioos ll to 13, see 

P. Mazur and J. Biel, Physica, 32 (1966) 1633. 

For the Prigogine-Brout equation, see 

R. Brout and I. Prigogine, Physica 22 (1956) 621. 

R.W. Zwanzig, In Lectures on Theoretical Ph2sics, vol. Ill, New York, 
1960. 

For the equations of Brownian Motion, see 

H. Mori, Progr. Theor. Phys. 33 (1965) 423. 

J.L. Lebowitz and P. RSSibois, Phys. Rev. l~9A (1965) ll01o 

For the Choh-Uhlenbeck equation, see 

J. Biel and J. Marro, Nuovo Cimento, 20 B (1974) 25. 

For a discussion of why some terms of our hierarchies may be 

neglected, see 

J. Biel, J. Marro and L. Navarro, Phys. Lett. ~_~4 A (1973) 41; 
and Nuovo Cimento 20 B (1974) 55. 

For a kinetic theory of irreversibility, see 

R. Balescu, in Sitses Interna~ional School of Physics, May 1972, 
New York, 1972. 



ERGODIC THEORY AND STATISTICAL MECHANICS 

Joel L. Lebowitz 

Belfer Graduate School of Science 
Yeshiva University, New York, 

NEW YORK 10053. 

I. INTRODUCTION 

i.i Scope of lectures 

II. ERGODICITY AND ENSEMBLE DENSITIES 

2.1 The ergodic problem 

2.2 Brief history of ergodic theory 

III. SYSTEMS OF OSCILLATORS AND THE KAM THEOREM 

IV. MIXING 

#.l Time correlstions and transport coefficients 

V. K- AND BERNOULLI SYSTEMS 

5.1 The baker's transformation 

5.2 The Kolmogorov-Sinai entropy 

VI. ERGODIC PROPERTIES AND SPECTRUM OF THE INDUCED UNITARY 
TRANSFORMATION 

VII. INFINITE SYSTEMS 

APPENDIX: Ergodic properties of simple model system with collisions 

REFERENCES 

Research supported by the United States Air Force Office of 
Scientific Research Grant Number 73-2530A. 



203 

I. INTRODUCTION 

I would like to talk about some of the progress that has been 

made in recent years in the mathematical theory of measure preserving 

transformations: ergodic theory. Since the dynamical flew in the 

phase space, which describes the time evolution of a Hsmiltonian sys- 

tem, is an example of such a transformation, this work has, in my 

opinion, much relevance to statistical mechanics and to the question 

of irreversibility. While the recent progress in this field is due 

mostly to the work of mathematicians like yon Neumann, Hopf, Kolmo- 

gorov, Sinai, Ornsbein and others, the origins of the subject go back 

to the founding fathers of statistical mechanics; Boltzmann, Maxwell, 

Gibbs and Einstein. These men and their followers invented the con- 

cept of ensembles to describe equilibrium and nonequilibrium macro- 

scopic systems. In trying to justify the use of ensembles, and to 

determine whether the ensembles evolved as expected from nonequili- 

brium to equilibrium, they introduced further concepts such as 

"ergodicity" and "coarse graining". The use of these concepts raised 

mathematical problems that they could not solve, but like the good 

physicists they were they assumed that everything was or could be made 

all right mathematically and went on with the physics. 

Their mathematical worries, however, became the seeds from which 

grew a whole beautiful subject called "ergodic theory". Here I will 

describe some recent (and some not so recent)developments that par- 

tially solve some of the problems that worried the Founding Fathers. 

Although results are not yet well enough developed to answer all the 

questions in this area that are of interest to physicists, such as the 

derivation of kinetic equations or the general problem of irreversi- 

bility, they do make a start. 

Since it has been only in the last few years that physicists have 

again become deeply involved in this subject, there is a big gap in 

the statistical mechanics literature concerning the developments in 

ergodic theory which have occurred in the last forty years. As a 

recent convert I have preached the gospel of ergodic theory many times 

in many places. Some of you will therefore have heard some parts of 

this talk before or you may have read it in some of the reviews of the 

subject I have written. Indeed these notes contain some (almost) 

verbatim transcripts of my article with Penrose in Physics Today. 
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I have also borrowed freely from joint works with Goldstein, Lanford 

and Aizenman, es well as independent works of these authors. The 

credit, but certainly not the blame, for what I will present here is 

therefore a shared one. 

A partial list of references, especially suited for physicists, 

is given at the end. 

i.I Scope of lectures 

Ergodic theory is concerned with the time evolution of Gibbs 

ensembles. It has revealed that there is more to the subject than 

the simple question of whether a dynamical system is ergodic (which 

means roughly, whether the system, if left to itself for long enough, 

will pass close to nearly all the dynamical states compatible with 

conservation of energy). Instead there is a hierarchy of properties 

that a dynamical system may have, each property implying the pre- 

ceding one, and of which ergodicity is only the first (see Table 1). 

The next one, called "mixing" provides a formulation of the type of 

irreversible behaviour that people try to obtain by introducing 

coarse-grained ensembles. At the top of our hierarchy is a condition 

(the Bernoulli condition) ensuring that in a certain sense the system, 

though deterministic, may appear to behave as randomly as the numbers 

produced by a roulette wheel. 

Some of the mathematical results we shsll be discussing have 

established the positions of some model physical systems in this 

hierarchy. Of particular interest to physicists is the work of Ya. 

Sinai on the hard-sphere system, which shows that this system is 

both ergodic and mixing. I shall also discuss some work by A.N. 

Kolmogorov, V.I. Arnold and J. Moser on systems of coupled anharmonic 

oscillators, which shows that, contrary to a common assumption, these 

systems may not even reach the "ergodic" rung on the ladder. (G.H. 

Walker and J. Ford have described this work for physicists). 

All the physical systems I shall discuss obey classical mechanics 

or are models of such systems. I shall consider first systems which 

have a finite number of degrees of freedom and are confined to a finite 

region of physical space. Here the concepts, if not the proofs, are 

basically simple. Later I shall discuss infinite systems, by which 

I mean the limit of a finite system as its size increases without 

bound. The concepts involved here are more difficult or at least may 

be less familiar to you. Also the basic ingredient for the study of 

the ergodic properties of such systems, the existence of a well-defined 
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Infinite systems: Ideal 
gas. Hard rod system~ per~ 
feet harmenic crystal 

Baker's transformation~ 
Geodesic flow on space of 
negative curvature, Par- 
ticle moving among fixed 
convex scatterers 

Infinite system: Lorentz 
gas 

Two or more hard spheres 
moving in two or higher 
dimensions? 

Simple model system with 
collisions" 

One dimensional harmonic 
oscillator 

Bernouilli 
system 

Equivalent to roulette 
wheel 

K-system 

Mixing system 

Ergodic system 

Essential randomness 

Approach to equilibriu~ 

Use of microcanonical 
ensemble 

Table I. Hierarchy of Systems 

The middle column lists the systems that will be discussed in 

these lectures, with the strongest at the top. Every mixing 

system is ergodic, every K-system is mixing and every Bernoulli 

system is s K-system. At the left are examples of the system 

and at the right physical interpretations or implications. 

time evolution, has only very recently been proved by Lanford. My 

discussion of infinite systems will therefore be even more sketchy 

than for the finite case. The reason for discussing them at all is 

that it is only in this limit, usually referred to as the thermo- 

dynamic limit, that the distinction between microscopic and macro- 

scopic observables, which appears essential to any complete theory of 

irreversibili~v, can be formulated precisely. 

My reason for not dealing with quantum systems here is that a 

finite quantum system can never exhibit any of the properties higher 

than simple ergodieity in our hierarchy (although, of course, a large 

quantum system mey approximate closely the behaviour characterized by 

these concepts). This is because the spectrum of a finite quantum 
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system is necessarily discrete, whereas for a finite classical sys- 

tem the spectrum (of the Liouville operator) can be continuous. In- 

finite quantum systems can, and do, exhibit ergedic behaviour similar 

to classical systems. Some very beautiful work on such systems has 

just, very recently, been done by Haag, Kastler and Eva Trych-Pohlmeye~ 

who is here. I hope to elaborate slightly on these remarks about 

quantum systems during these lectures. 

I should point out right here that care must be exercised in 

drawing analogies between the ergodic properties of finite and in- 

finite systems, as the dependence of these properties on the inter- 

actions between the particles, end thus also their physical interpre- 

tation, may be very different in the two cases. Thus while a finite 

ideal gas (classical system of non-interacting point particles) is 

not even ergodic, the ir~inite ideal gas has the strongest possible 

ergodic properties: it is a Bernoulli system, c.f. Table 1. 

The explanation of the good ergodic properties of the infinite 

ideal gas is simple: local disturbances "fly off" unhindered to 

infinity where they are no longer observable. This means that the 

"approach" or better the return to equilibrium of a large (infinite) 

system, which is perturbed locally away from equilibrium, may occur 

even in the absence of a local "dissipative" mechanism such as is 

provided by collisions. It can happen simply, as it does in the 

ideal gas (or the perfect harmonic crystal) by the disturbance dis- 

appearing from sight by the free streaming motion of the particles 

(phenons). 

This kind of return to equilihrium is of course not described 

by a kinetic or hydrodynamic equation and is therefore not the kind 

of irreversibility which is of interest in real physical systems. It 

is therefore necessary to introduce additional structure, to that 

provided by ergodic theory alone, to distinguish between infinite 

systems of the ideal gas type and more realistic physical systems, 

such as the Lorentz gas, where there exists a local mechanism, e.g. 

collisions, for the approach to equilibrium. A start in this direc- 

tion has been made by S. Goldstein who considered the (generalized) 

ergodic properties of an infinite system under the joint group con- 

sisting of the time evolution and space translations. He showed that 

these two different kinds of systems can indeed be clearly distinguish- 

ed with this sharper tool. The work of Haag, Kastler and Pohlmeyer, 

mentioned earlier, also has some bearing on this question and I hope 

to return to this point later. 
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II. ERGODICITY AND ENSEMBLE DENSITIES 

Before we go on to discuss the new results, we review some 

mathematical definitions. If our dynamical system has n 

degrees of freedom, we can think of its possible dynamical states 

geometrically, as points in a 2n-dimensional space (phase space), 

with n position coordinates and n momentum coordinates. If the 

energy of the system is E, then its dynamical state x (= (ql "'" 

qn' Pl "'" Pn )) must lie on the energy surface H(x) = E, where H 

is the Hamiltonian function. We denote the energy surface, which is 

(2n - 1)-dimensional, by S E or just S and assume that S is 

smooth and of finite extent; for example in the case of s system of 

harmonic oscillators, for which the Hamiltonian is a quadratic form, 

t~eenergy surfaces are (2n - 1)-dimensional ellipsoids. 

The time evolution of the system causes x to move in phase space, 

but since we are assuming our system to be conservative the point x 

always stays on the energy surface. If the system is in some state 

x at some time t o then its state at any other time t o + t is 

uniquely determined by x and t (only). Let us call the new state 

~t(x). This defines a transformation ~t from S onto itself. 

There is one such function for each value of t. 

We shall want to integrate dynamical functions (that is, functions 

of the dynamical state) over S. When doing this it is convenient 

not to measure (2n - 1)-dimensional "areas" on the surface S in the 

usual way but to weight the areas in such a way that the natural motion 

of the system on S carries any region R (after any time t) into a 

region ~t(R) of the same area. This can be accomplished by defining 

the weighted area of a small surface element near x, dx, to he such 

that dxdE is the correct Euclidean 2n-dimensional volume element of 

a "pill box" with base dx and height dE. Formally 

d x  = d r E ( x ) / I V ~ ( x ) l  , x ~ s E 

where  d rE(X)  i s  t h e  " u s u a l "  s u r f a c e  a r e a  on  S E a n d  V H ( x )  i s  t h e  

gradient of the Hamiltonian 

Iv (x)l = L + " 
~=1 

By a Gibbs ensemble we mean an i n f i n i t e l y  l a r g e  h y p o t h e t i c a l  
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collection of systems, all having the same Hamiltonian but not ne- 

cessarily the same dynamical state. We shall only consider ensembles 

whose systems all have the same energy, so that their dynamical states 

are distributed in some way over some energy surface S. It may happen 

that this distribution can be described by an ensemble density; by 

this we mean a real-valued function ~ on S such that the fraction 

ef members of the ensemble whose dynamical states lie in any region 

R on the surface S is 

with dx the weighted area  defined above. The simplest ensemble 

density on S is given by 

~(x) = C (all x in S) 

where C is a constant, which can be determined from the normalization 

condition [ C dx = i. This is called the microcanonical ensemble 
"S on S. 

The systems constituting the ensemble evolve with time, so that 

the ensemble density will depend on time. The rule connecting the 

ensemble densities ~t describing the same ensemble at different 

times t is Liouville's theorem, which can be written 

<x> = [ <all t ,  a l l  x in 

where ~o(X) is the ensemble density at time zero. For example, 

Liouville's theorem shows that the density of the microcanonical en- 

semble does not change with time: If 

g o ( X )  = c 

f o r  a l l  x i n  S, t hen  L i o u v i l l e ' s  theorem g i v e s ,  f o r  any t ,  

It(x) = c 
for all x in S. 
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2.1 The ersodic problem 

The principal success of ensemble theory has been in its applica- 

tion to equilibrium. To calculate the equilibrium value of any dyna- 

mical function we average it over a suitable ensemble. The same en- 

semble also enables us to estimate the magnitude of the fluctuations 

of our dynamics1 function. To ensure that the calculated averages 

are independent of time, we use an invarisnt ensemble; that is, one 

for which the fraction of members of the ensemble in every region R 

on the energy surface S is independent of time. We already know 

one invariant ensemble: the microcanonical, whose ensemble density 

is uniform on S. Before we can use it confidently to calculate 

equilibrium values, however, we would like to be sure that this is 

the only invariant ensemble: If other invariant ensembles exist then, 

in principle, they could do just as well for the calculation of equili- 

brium properties, and we would have to choose which to use in a par- 

ticular situation. 

There are two questions to settle: the first is whether there 

are any invarisnt ensembles on S that do not have an ensemble den- 

sity. In general there are; for example in the case of a hard-sphere 

system in a box one could have an invariant ensemble where every par- 

title moves on the same straight line being reflected at each end 

from 8 perfectly smooth parallel wall (see fig. i). 

The obviously exceptional character of this motion is reflected 

mathematically in the fact that this ensemble, though invariant, is 

confined to a region of zero "area" on S and therefore has no en- 

semble density. To set up such 8 motion would presumably be physically 

impossible because the slightest perturbation would rapidly destroy 

the perfect alignment. It is therefore natural to rule out such ex- 

ceptional ensembles by adopting the principle that any ensemble cor- 

responding to 8 physically realizable situation must have an ensemble 

density. 

There remains the seoQnd part of the question: Are there any 

invariant ensembles on S that do have a density but differ from the 

microcanonical ensemble? This is equivalent to the er~odic problem 

in which one compares the time averages of a dynamical function f, 

• 1 [T 
f~(x) = imm ~ ) f(~t(x))dt 

T--~ o 
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Fig. i. Ensemble with no ensemble density. 

Hard spheres move up and down the dotted line, 
which meets the perfectly smooth hard walls at 
right angles. Collisions between particles and 
collisions with the walls do not deflect the 
particles from the line if they are perfectly 
aligned at the start. An ensemble of such systems 
has no ensemble density because it is concentrated 
on a region on the energy surface with zero area 
(just as the area of a line or of a line segment 
in a plane is zero). 

with its microcanonical ensemble average 

A system is said to be ergodic on its energy surface 

averages are in general equal to ensemble averages; 

every integrable function f we have 

f*<x  = <f> 

S if time 

that is, if for 

(l) 

for almost all points x on S. "Almost all" means that if M is 

the set of points x for which eq. 1 is false, we have ;MdX = Oo 

The answer to our second question is given by a theorem , which 
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we shall not prove: the microcanonical ensemble density is the only 

invariant ensemble - that is, the only one sstisfying~[~t(x ~ = 

for all x in S - if and only if the system is ergodic on S. 

The physical importance of ergodioity is that it can be used to 

justify the use of the microcanonical ensemble for calculating equili- 

brium values and fluctuations. Suppose f is some macroscopic ob- 

servable and the system is started at time zero from a dynamical state 

x, for which f(x) has a value that may be very far from its equili- 

brium value. As time proceeds, we expect the current value of f, 

, to approach and mostly stay very close to an which is 

equilibrium value with only very rare large fluctuations away from 

this value. This equilibrium value should therefore be equal to the 

time average f~ because the initial period during which equilibrium 

is established contributes only negligibly to the formula defining 

f@(x). The theorem tells us that this equilibrium value is almost 

always equal to <f> , the average of f in the microcanonical 

ensemble, provided the system is ergodic, 

To justify the use of the microcanonic81 ensemble in calculating 

equilibrium fluctuations we proceed in a similar way. For some ob- 

servable event A (such as the event that the percentage of gas 

molecules in one half of a container exceeds 51%) let R be the 

region in phase space consisting of all phase points compatible with 

the event A; that is the event A is observed if and only if the 

phssepoint is in R at time t° If the system is observed over a 

long period of time, the fraction of time during which event A will 

be observed is given by the time average g~(xo) , where x O is the 

initial dynamical state and g is defined by 

g(x) = [ 1 if X is in R 

[ 0 if not. 

The ergodic theorem tells us that for almost all initial dynamical 

states this fraction of time is equal to the ensemble average of g, 

which is 

This is just the "probability" of the event A as calculated in the 

microcanonical ensemble on S. 

Another way of defining ergodicity is to say that any integrable 

invsriant function is constant almost everywhere. That is to say, if 
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f is an integrable func@ion satisfying the condition that 

for all x in S, then there is a constant c such that f(x) 

equals c for almost all x : In other words, the set M of points 

x for ~hich f(x) does not equal c satisfies ;Mdx = 0. This 

has the physical interpretation that for a Hamiltonian system ergodic 

on S every integrable constant of the motion is constant on S° 

Furthermore if ergodicity holds on each S E then there are no inte- 

grable constants of the motion other than functions of the energy E. 

Indeed, if there were other constants of the motion (for example 

angular momentum if the Hamiltonian had an axis of symmetry) we could 

construct invariant densities that were not microcanonical by taking 

?(x) to be s function of one of these other constants of the motion, 

and so the system would clearly be nonergodic. (When such additional 

constants of the motion exist they must be taken into account in the 

statistical mechanics and thermodynamics of the system; the standard 

methods, based on the microcanonical ensemble, must then be generalized 

for these systems.) 

These relationships between ergodicity and constants of the mo- 

tion ere a consequence of Birkhoff's theorem that ergodicity, as de- 

fined by the equality of the time average to the ensemble average, 

eq. l, is equivalent to the energy surface being "metrically transi- 

tive". Stated precisely this means that a system is ergodic on S 

if and only if all the regions R on S left invariant by the time 

evolution, ~t(R) = R, either have zero area or have an area equal 

to the area of S. 

The difficult part of Birkheff's Theorem is to show that f@(x), 

which involves taking the time average over infinite times, actually 

exists for almost all x when f(x) is an integrable function. It 

is then relatively easy to show that f$(x) is time invariant; that 

is, f*K~t(x)]= f~(x), and that ergodicity is equivalent to S be- 

ing metrically intransitive. 

2.2 Brief history of er~odic theory 

The "ergodic hypothesis" was introduced by Boltzmann in 1871. 

To quote Maxwell ".. (it) is that~hesystem, if left to itself in its 

actual state of motion, will, sooner or later, pass through every 

phase which is consistent with the equation of energy." In our 
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notation "phase" means dynamical state and the ori~inal ergodic 

hypothesis means that if y and x are any two points on the energy 

surface SE, then y = ~t(x) for some t. The ergodic hypothesis 

thus stated was proven to be false, "whenever S E has dimensionality 

greater than one, by A. Rosenthal and M. Planeherel in 1913. S.G. 

Brush gives a nice account of the early work on this problem. 

The definition of an ergodic system given in eq. i can be shown 

to imply what is sometimes called the "quasi-ergodJc" hypothesis, 

which replaces "every phase" in Maxwell's statement by "every region 

R on S E of finite area"~ with the further qualitication that this 

is true for "almost all" dynamical states. Indeed as was pointed out, 

the fraction of time tha~ the system will spend in R is equal, for 

an ergodic system, to the fraction of the area of S E that is oc- 

cupied by R. 

III. SYSTEMS OF OSCILLATORS AND T}~ KAM THEOREM 

We shall now consider some examples of ergodic and non-ergodic 

systems. The simplest example of an ergodic system is the simple 

harmonic oscillator whose Hamiltonian (in some suitable units) is 

~(q,p) : i 9~(p2 + q2) 

where ~ is the angular frequency. The transformation ~t for this 

system is a rotation through angle ~Ot in the (q,p) plane. The 

trajectories, which here coincide with the energy surfaces SE, are 

circles of radius (Z~/~) I/2. (The surface element dx is here 

proportional to the ordinary length of an arc segment.) To be in- 

variant under the transformation ~t an ensemble density on S must 

be unaffected by rotations and is therefore a constant. It follows, 

then,%hst the only invariant density is the microcanonical density 

and so the simple harmonic oscillator is ergodic. 

Almost as simple is the multiple harmonic oscillator (physically, 

say, an ideal crystal), that is, a system with two or more degrees 

of freedom whose potential energy is a quadratic form in the posi- 

tion coordinates. Unlike the simple harmonic oscillator it cannot 

be ergodic, because it has constants of the motion (the energies of 

the individual normal modes) that are not constant on the energy 

surfaces (the surfaces of constant total energy). 

It used to be thought that this lack of ergodicity was an 
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accident and that any small anharmonicity (such as would inevitably 

be present in 8 real system) must make the system ergodic by permit- 

ting transfer of energy from one mode to another. In 1954, however, 

Kolmogorov announced results that contradicted this belief. In 

1955, Enrico Fermi, J. Pasta and S.W. Ulam carried out a computer 

simulation of such a system. Initially, they excited one mode only, 

and instead of the equipartition of the energy between all modes pre- 

dicted by the microcanonical ensemble they found that most of it ap- 

peared to remain concentrated in a few modes; this indicated that 

anharmonic oscillator systems may not be ergodic. 

The lack of ergodicity was proved rigorously by Kolmogorov, 

Arnold and Moser. They found that if the frequencies of the unper- 

turbed oscillators are not "rationally connected" (that is, if no 

rational linear combination of them is zero) then, in general, adding 

to the Hamiltonian an anhsrmonic perturbation sufficiently small com- 

pared to the total energy does not make the system ergodic. The un- 

perturbed trajectories (possible paths of the phase point) all lie on 

n-dimensional surfaces in S (which has 2n-1 dimensions) called 

"invariant tori", and "KAM" prove that under a weak perturbation most 

trajectories continue to lie within smooth n-dimensional tori, so that 

the perturbed system is also non-ergodic. The trajectories that do 

not lie on the new invariant tori are, on the other hand, very erratic 

and may fill some (2n - 1)-dimensional region densely. One conse- 

quence of this very complicated behaviour is that even though the sys- 

tem is not ergodic the motion can no longer be decomposed into inde- 

pendent normal modes. 

Similar results probably hold also for rationally connected fre- 

quencies (which cannot be treated rigorously, although they are of 

more physical interest); thus Michael H6non and Carl Heiles carried 

out computer calculations for the Hamiltonian 

= ½(Pl 2 +p2 2 + ql 2 + q2 2) + (ql2q2 - ½q2 3) (3.1) 

whose unperturbed frequencies e I = i, w 2 = i, are ration~lly con- 

nected since i.~i - i-~ 2 = O. They found that the energy surfaces 

with E equal to 1/12, 1/8 and probably also 1/6 are not ergodic 

(see figure 2). As seen in the diagrams the fraction of the area 

corresponding to smooth curves (which are responsible for the non- 

ergodic behaviour) decreases as the energy increases. 

For a general system of anharmonic oscillators, such as a real 

crystal, we expect similar behaviour, with the fraction of S E cor- 

responding to non-ergodic behaviour decreasing as E increases, and 
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Fig. 2. Nenergodicity of an anharmonic oscillator system 
with rationally connected frequencies. 

The Hamiltonian for this system is given in eq. (3.1). 
Michael H@non and Carl Heiles did computer calculations 
for this system and found that energy surfaces S E with 
E equal to 1/12, 1/8 and probably 1/6 are not ergodic. 
The planes shown here are intersections of the surfaces 
ql equal to zero with S E for E equal to 1/12 (a), 1/8 (b) 

and 1/6 (c), and the points are the intersections of a 
trajectory with this plane. When the trajectory lies on 
a smooth two-dimensional invariant torus, the intersection 
points form a smooth curve, but the intersections of an 
"erratic" trajectory (one that does not lie on a smooth 
curve) are more or less random. Note that the fraction 
of area corresponding to smooth curves (which are res- 
ponsible for the nonergodic behaviour) decreases with 
increasing energy. 

probably disappearing altogether at some critical energy, above which 

the system would be ergodic and perhaps also show the stronger pro- 

perties that we s~all discuss. At present very little is known abo~t 

the magnitude of this critical energy in a system with many degrees 

of freedom. 

In the case of gases, the situation is somewhat different. If 

there were no interaction at 811 between the molecules ~hen the energy 

of each molecule would be sn invariant of the motion, so that the sys- 

tem (an ideal gas) would be nonergodic. The KAM theorem would there- 

fore lead us to expect nonergodicity to persist in the event of a 

sufficiently weak ~nteraction between the particles, The actual in- 

teractions, however, are not weak because two molecules very close 

together repel each other strongly; consequently the theorem does 

not apply. A s~mple model of this type ~s the hard-sphere gas en- 

closed in a cube with perfectly reflecting walls or periodic boundary 

conditions. Sinai has outlined s proof that this system i__ss ergodic; 

he has published a detailed proof~ based on the same ideas, for a 
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particlo moving in a periodic box containing any number of rigid 

convex elastic scatterers. We shall refer again to this important 

result. 

IV. MIXING 

We have seen how to formulate a condition to ensure that the 

equilibrium properties of a dynamical system are determined by its 

energy alone and can be calculated from a microcanonical ensemble. 

This ergodicity condition does not, however, ensure that if we start 

from a non-equilibrium ensemble the expectation values of dynamical 

functions will approach their equilibrium values as time proceeds. 

An illustrative example is given by the harmonic oscillator. For the 

harmonic-oscillator system, Liouville's theorem shows that the en- 

semble density repeats itself regularly at time intervals of 2~/~ ; 

therefore all ensemble averages also have this periodicity, and so 

cannot irreversibly approach their equilibrium values. 

To ensure that our ensembles approach equilibrium in the way we 

would expect of ensembles composed of real systems, we need a stronger 

condition than ergodicity. To see what is required, let us start at 

t = 0 with some ensemble density go(X) on S, which is supposed 

to represent the initial non-equilibrium state. At a later time t 

the ensemble density is, by Liouville's theorem,° go [d-t (x)] The 

expectation value of any dynamical variable f at time t is there- 

fore 

As t becomes l a r g e  we w o u l d  l i k e  t h i s  i n t e g r a l  t o  a p p r o a c h  the  

equilibrium value of f, which is (for an ergodic system) 

fsf(X) dx/ ~sdX. A sufficient condition for this is that the system 

should satisfy the condition called mixing which is that for every 

pair of functions f and g whose squares are integrable on S, we 

require 

r 
lim I f (x)g(¢_t(x))~x = 

t-~-+ ~ JS fS dx 

fs f(x)dx ~s g(x) 
. ( 4 . 2 )  

The special case whoro g is ~o shows that integral ($.1) will ap- 

proach the equilibrium value of f for large t whon the system 
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is mixing. Another way of looking at this condition is that it re- 

quires every equilibrium time-dependent correlation function such as 

<f(x~g [6t(x)]>to approach a limit <f> ~g> as t approaches ± ~. 

The condition of mixing can be shown to be equivalent to the 

following requirement: if Q and R are arbitrary regions in S, 

and an ensemble is initially distributed uniformly over Q, then the 

fraction of members of the ensemble with phase points in R at time 

t will approach a limit as t approaches ~ ; this limit equals the 

fraction of the ares of S occupied by R. 

This condition can be stated formally as follows: Let~(A) de- 

note the normalized area of a set A on the energy surface S~ i.e. 

the probability in the microeanonie81 ensemble of finding the system 

in A, 

(For simplicity we shall set fe dx = 1 from now on.) 

A system is mixing ill for any sets A and B 

) ~(At"~) t- .±'~ ~#<A)j~(B> , A~= ct(a) (~.5) 

We can interpret this to mean thet if we start with an ensemble at 

t = 0 such that all the systems are in region A, 

0 otherwise 

then the fraction of systems in this ensemble that will be in region 

B at time t will approach ~(B)~ see figure 3. 
J 

CII[IIII i[ [llllir~L_~ n~= 

A t - r l B ' ~  ~ 8 

"-S 

Ill FC~vr{ "5. 

Mixing is a stronger condition than ergodieity: it can easily be 

shown to imply ergodieity but is not implied by it, as we have seen 
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in the case of a simple harmonic oscillator. 

The proof is simple. Suppose that A is sn invariant set, 

A t = A. Then if the system is mixing we must have, 

so that ~(A) = 0 or ~(A) = i which, since it holds for all 

invariant sets, implies ergodicity as was noted earlier. 

The mathematical definition of mixing was introduced by John 

yon Neumsnn in 1932 and developed by E. Hopf, but goes back to J. 

Willard Gibbs, who discusses it by means of an analogy: "... the 

effect of stirring an incompressible liquid .... Let us suppose the 

liquid to contain a certain amount of colouring matter which does not 

affect its hydrodynamic properties ... (and) that the colouring matter 

is distributed with variable density. If we give the liquid any motion 

whatever ... the density of the colouring matter at any same point of 

the liquid will be unchanged ... Yet... stirring tends to bring a 

liquid to a state of uniform mixture." 

Gibbs saw clearly that the ensemble density ~t of a mixing 

"fine-grslned system does not approach its limit in the usual " " or 

"pointwise" sense of ~t(x) approaching a limit ss t --~ for 

each fixed x. Rather, it is a "coarse-gralned or "weak" limit, 

in which the average of ~t(x) over a region R in S approaches a 

limit as t --P~ for each fixed R. (A similar distinction applies 

in defining the entropy. The fine-grained entropy -kf ~t(x)log~t(x)dx, 

where k is Boltzmann's constant, retains its initial value forever, 

but the coarse-grained entropy -k ~ ~t(x)[l°g ~t (x~dx, where 

~ t (x) is a coarse-grained ensemble density obtained by averaging 

t(x) over cells in phase space, does change for a non-equilibrium 

ensemble, end approaches as its limit the equilibrium entropy value 

k log f S dx ). 
It is sometimes argued that one cannot have a proper approach to 

equilibrium for any finite mechanical system because of a theorem, due 

to Poincar@, that every such system eventually returns arbitrarily 

close to its initial state. (The time involved, however, will be 

enormously large for a macroscopic system. Boltzmann, for example, 

estimated a typical Poincar@ period for lO0 cm 3 of gas to be enor- 

mously long compared to lO raised to the power lO raised to the power 

lO years.) Here, however, we are considering ensembles, not individual 

systems, and the mixing condition guarantees that the ensemble density 

eventually becomes indistinguishable from the microcanonical density 
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and remains so forever after. It is true that individual systems in 

the ensemble will return to their initial dynamical states, as requir- 

ed by Poincar@'s theorem, but this will happen at different times for 

different systems, so that at any particular time only a very small 

fraction of the systems in the ensemble are close to their initial 

dynamical states. 
The reason for the irrelevance of Poincar6 recurrences in mixing 

systems is that the motion of the phase point is very unstable. 

Dynamical states that start very close to each other in phase space 

Before After 

Fig. 4. A familiar example of "mixing". 

According to V.I. Arnold and A. Avez, the two 
liquids are rum (twenty percent) end cola (eighty 
per cent), with the result of the mixing process 
known as a "Cuba libre". 

become widely separated as time progresses, so that the recurrence 

time depends extremely sensitively on the initial conditions of the 

motion. (The importance of this instability in statistical mechanics 

was first recognized by N.S. Krylov, a Russian physicist who died in 

his twenties in 19&7.) This type of instability appears to be charac- 

teristic of real physical systems, and leads to one sort of irreversi- 

bility: even if we could reverse the velocities of every particle in 

a real system that has been evolving towards equilibrium, the system 

would not necessarily return or even come close to its initial dyna- 

mical state with the velocities reversed because the unavoidable small 

external perturbations would be magnified. This instability is notice 

able in molecular-dynamics calculations with hard-sphere systems: 
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if we numerically integrate the equations of motion from time 0 to 

time t and then try to recover the initial state by integratimg 

backwards from time t to time O, we obtain instead a completely 

new state. This is because the numerical integration is unstable to 

small rounding-off errors made during the computation, which play the 

same role as external perturbations in a real system. 

Only a few physical systems have been proven so far to be mixing. 

The most important is the hard-sphere gas, mentioned above. Sinai's 

proof that this system is ergodic also gives the stronger result that 

it is mixing. Roughly, Sinai's method of proving mixing is to show 

that the hard-sphere system is unstable in the sense discussed above. 

Physically this instability comes from the fact that a slight change 

in direction of motion of any particle is magnified at each collision 

with the convex surface of another particle. The full proof for the 

simplest case of a "single" particle moving among fixed convex 

scatterers is already quite complicated and the proof for moving hard 

sphere has not yet appeared. That is why I put a question mark next 

to this system in ~able i. I have some private information however 

(from G. Gallavotti) that Sinai is in the process of writing up the 

proof and has already finished a hundred pages of manuscript. As 

indicated in Table I the proof will actually be that this system is 

s K-system. 

A very simple model system with "collisions" which is mixing was 

considered by Goldstein, Lanford and Lebowitz. This will be described 

in the Appendix. 

4.1 Time correlations an d transport coefficients 

As indicated by all the speakers here, the study of time corre- 

lation functions of the form <g(t)f> plays a central role in the 

statistical mechanical theory of non-equilibrium phenomena. When a 

system is mixing then these functions will certainly approach their 

uncorrelsted values as It~ ---~ , provided that g and f are 

square integrable, ~g2> ~ ~ , ~ f2> g ~ , i.e. 

( g ( t ) f >  - ¢ ~ >  g f >  = o as J t J - - - - ~ .  (4.~) 

A system is said to be weakly mixing if, under the same conditions 

on square integrability 
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T 

ill 
T--~ o 

(4.5) 

This is clearly a weaker requirement then (4.4). It is however still 

stronger than ergodicity which can be shown to be equivalent to the 

requirement that 

T 

T-~ o (~.6) 

In many cases one is interested in the time integrals of these corre- 

lations. This stems from the fact, pointed out by many of the lectur- 

ers here (indeed Professor Kubo is the modern father of this subject-) 

that linear transport coefficients, such as heat conductivity, vis- 

cosity etc., may be expressed as integrals over time (from t = 0 to 

t = ~ ) of the time correlation of appropriate dynamical functions 

(Einstein-Green-Kubo). These functions represent the "fluxes" as- 

sociated with the transport processes in question. A well known ex- 

ample of such a "formula" is the Einstein relation between the self- 

diffusion constant D and the integral of the velocity auto-correla- 

tion function of a specified particle, say particle one, 

(Vl(t) Vl), ( vl> : o). 
It might appear that for mixing systems these transport coeffi- 

cients could be defined meaningfully, without going to the thermo- 

dynamic limit of an infinite size system, as long as[<g(t)f) - ~g)gf~ 

approached zero sufficiently rapidly to be integrable. Such is, how- 

ever, not the case, as indeed it should not be on physical grounds. 

Formally this occurs because the flux functions whose time Correlations 

are of interest for transport coefficients can generally be written 

as Poisson brackets with the Hamiltonian H, i.e. f = (F,H), 

g = (G,H), and for mixing systems it can be shown that when f, g, 

F, G are all square integrable, then 

T 

lim I ~f(t)g> dt = <(F,H)G> 
T --~oo o 
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I 
T 

lim (f(t)f> dt = 0 
T --~oo o 

Thus for s finite mixing system confined by a wall, 

I 
T 

lim (Vl(t)Vl~ dt = lira <ql(T)Vl) = 0 (~.7) 
T --P co o T--Pco 

since 

v I = ~v12 dx < oo, 

Note that when 

g 
(ql,H) and ] qf ax < ~ . 

ql is an angle variable, e.g., in the case of 

periodic boundary conditions, then v I 6 (ql,H) and (4.7) need not 

hold. We would still have, however, <Vl(t)Vl)~O i~f the system is 

mixing. 

When the system is not mixing, the limit T --~ ~ in the above 

integrals need not exist. It is still true however that for any 

finite s#stem 

lim I<f(t)f> dt d <F(T)~}] = o, i f  i t  = lim -~-~ 

9--p~ exists. 

This is so since, 

<F(~)F > ~ (F(T)F(~)> ~ 02>  ~ 

so thst when F is sguare in~egrable 

cillate or approach zero. 

d/dt~F(T)F> can either os- 

These time correlation integrals will therefore, if they exist 

at all, be equal to zero in any finite system. (The interesting fact 

is that they do exist for mixing systems). The Einstein-Kube type 

formulae for transport coefficients can therefore be mathematically 

meaningful only in the thermodynamic limit. It is of course possible, 

and even likely, that for macroscopic systems there exists values of 

T for which the integral in (~.7) is "close'to the diffusion constant 
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V. K- AND BERNOUILLI SYSTEMS 

In order to give a physical definition of these systems we de- 

fine a finite partition of the energy surface S of our dynamical 

system as any finite collection of n non-overlapping regions 

Ro, ..., R k which together cover the whole of S (see Fig. 5). 

E~(R i) = i, ~(R iN~j) = o. 

Fl'~u r,R ~', 

Suppose now that an experiment is made that will determine which of 

these regions the phase point is in at any time, but gives no informa- 

tion whatever about which part of the region it is in. That is, every 

time we use this measuring device we obtain an Qutcome that is a posi- 

tive integer - the label of the region the phase point of the system 

is in at that time. As an example we may consider a system of k 

particles in a box and the experiment consists of measuring the number 

of particles in one half of the box. 

Suppose we use the device repeatedly at intervals of, say,second: 

Its outcome will be a sequence of positive integers from the set 

{0, ..., k} , which can be extended indefinitely. In general, we 

would expect these integers to be correlated; that is, the microcano- 

nical probability for each new observation depends on what has been ob- 

served before (as in a Markav process, for example). This correlation 

comes about because the dynamical states of the system at different 

times are deterministically related, through the equations of motion. 

Indeed, it may be possible to choose the partition and the time inter- 

vals between measurements in such a way that the outcome of later 

measurements is completely determined by the outcome of the earlier 

ones. That this is possible even in the case of ergodic systems may 

be seen easily by considering the simple harmonic oscillator consider- 

ed earlier and making the interval between measurements equal to the 

period ~ . The oscillator will then be found each time in the same 

set R L , since ~ Rj = Rj for a system with period ~ . 

It should be clear however from our earlier discussion that such 

a deterministic behaviour of successive measurements is impossible 
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for a mixing system. For in a mixing system each set R~ will 

eventually become uniformly spread out over the whole ~nergy surface, 

i.e. 

for every value of ~ It might still be possible however that 

successive measurements provide more and more information so that 

eventually one really knows what the result of the next measurement 

will be. Somewhat more formally we may let G(n) be the uncertainty 

in the outcome of the n-th measurement (given the results of the 

first n-i measurements). A K-system is then a system for which 

~(n) ~ ~ > 0 no matter how large n is and no matter what the 

partition, or ~ , is. For a system which is only mixing there will 

be partitions for which E(n) w 0 as n--~ . It is, in this 

sense, that K-systems have an essential randomness in them. 

This will be made more precise in the next section when we dis- 

cuss the Kolmogorov-Sinai entropy of a flow. First however I shall 

discuss the last and highest member of our hierarchy: the Bernoulli 

system. This will also give me the opportunity to introduce to you 

the paradigm of Bernoulli systems; the baker's transformation. 

A Bernoulli system is one for which it is possible to choose 

the regions Ro, ..., Rn_ I in such a way that the observations made 

at different times are completely uncorrelated, just like the numbers 

shown at different times by a roulette wheel. At the same time, the 

regions so chosen give enough information to discriminate between 

dynamical states: if two systems have different dynamical states 

at some time, then the observations made on them cannot yield identi- 

cal results for the observations at every time. Such a partition is 

called a generating partition. When such regions can be chosen, we 

call the system a Bernoulli system, i.e. a Bernoulli system permits 

the construction of an independent generating partition . There is 

of course no requirement, and indeed no possibility, that all parti- 

tions be of this type. Since however a Bernoulli system is also a 

K-system, every partition will have the inherent randomness associa- 

ted with K-systems which we discussed earlier. 

Recently Gallavotti and Ornstein showed that s point particle 

moving (in two or higher dimensions) among fixed convex scatterers 

(in a box with rigid walls or on a torus; periodic boundary condi- 

tions) is a Bernoulli system. (More precisely a Bernoulli flow, 

which means that there exists an independent generating partition 



f o r  every  z 7 0 ) .  The proof of  G a l l a v o t t i  and Orns t e in  u t i l i z e s  t h e  

r e s u l t s  of S i n a i  t h a t  t h i s  system i s  a  K-system a s  we l l  a s  t h e  tech-  

n iques  developed by Orns t e in  and Weiss who showed t h a t  t h e  geodes ic  

flow on a  space of cons t an t  nega t i ve  cu rva tu re  i s  Be rnou l l i .  

5.1 The b a k e r ' s  t r ans fo rma t ion  

A s  an  i l l u s t r a t i o n  of  a  s imple  B e r n o u l l i  system, cons ide r  a  sys .  

tem whose phase space i s  t h e  square  0  < p & 1, 0 < q & 1 shown 

i n  F igure  6 ,  and w h o s e h o n - ~ a m i l t o n i a n )  law of motion i s  g iven  by a  

mapping known a s  t h e  bake r ' s  t r ans fo rma t ion  because i t  r e c a l l s  t h e  

kneading of a  p i ece  of dough. 

F ig .  6. The b a k e r ' s  t r ans fo rma t ion  r e c a l l s  t h e  kneading of  
a  p i ece  of  dough. 

We f i r s t  squash t h e  square  t o  h a l f  i t s  o r i g i n a l  
h e i g h t  and twice  i t s  o r i g i n a l  width,  and t h e n  
c u t  t h e  r e s u l t i n g  r e c t a n g l e  i n  h a l f  and move t h e  
r i g h t  h a l f  of t h e  r e c t a n c l e  above t h e  l e f t .  

I f  t h e  phase p o i n t  i s  (p ,q )  a t  t ime  t ,  t h e n  a t  t ime t + 1 

it i s  a t  t h e  p o i n t  ob t a ined  by squash ing  t h e  square  t o  a  (112 x 2 )  

r e c t a n g l e ,  t hen  c u t t i n g  and reassembl ing  t o  form a  new square  a s  

shown i n  t h e  diagram. The formula f o r  t h i s  t r ans fo rma t ion  i s  
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If p and q are written in binary notation (1/8 in binary nota- 

tion is O.OOlO0 ..., 1/4 is O.OlO00, and so on), the transformation 

removes the first digit after the binary point from p and attaches 

it to q, so that 

~(O.plP 2 ..., O.qlg 2 ...) = (O.p2p 3 ..., O.Plqlq2...) 

where the Pi and qi take on the values 0 and I. This transfor- 

mation is invertible and from it we can define ~-l as the inverse 

of ~ and ~±t as the t-th iteration of ~±l" (Only integer values 

of the time are used here, rather thsn all real values, ss in our dis- 

cussion of dynamics earlier in this talk, but we do not regard this 

distinction as important.) Moreover, the transformation preserves 

geometrical area, and so the analog of the microcanonicsl distribu- 

tion is just a uniform density. 

To see how this completely deterministic system can st the same 

time behave like a roulette wheel, we take the regions R o and R 1 

to be the two rectangles 0 ~ p ~ 1/2, 1/2 ~ p ~ 1 as shown in 

Fig. 7. 

Fig. 7. 

v 

P 

Definition of the regions R o and R 1 used 

to show that the baker's transformation is a 

Bernoulli system. 

Suppose the phase point at time 0 is 

(p,q) = (0.plP 2 ..., 0.qlq 2 .-.) . 

If Pl is zero, the system at time 0 is in Ro; if Pl is one, 

the system at time 0 is in R I. At time 1 the phase point is 
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(O-P2P 3 ..., 0-Plqlq 2 --. ) 

and so we observe the phase point in region ~ . At time 2 it 

is in R~3 and so on. Likewise, at time -i it is in Rql , at 

time -2 in Rq2 , and so on. Each observation is determined by a 

different digit in the binary representation of the number pair (p,q). 

Since the analog of the microcanonical ensemble for this system 

has a uniform density in the square it is not difficult to see that 

the micrecanonical probability of each of these digits in the binary 

expression for (p,q) is 1/2, and is uncorrelated with all the other 

digits. The observations made at different times t (= integer) are 

therefore uncorrelated, and so the baker's transformation model is a 

Bernoulli system. 

The baker's transformation is an example of a Bernoulli shift. 

Let ~ denote a point in the space of doubly infinite sequences 

i @ (O, 1), with i an integer (positive, negative or zero). 

We set ~ i = Pi÷l for i ~ 0, and ~i = q-i for i < 0. 

The ~ specifies s point in the unit square 

" ) 

and the baker's transformation is simply the shift 

=  i+l • 

Possibly one should not read too much physical meaning into this 

type of result, for with a more complicated dynamical system the 

regions Ro, R1, R2, ..., R n would probably be exceedingly complica- 

ted sets in phase space, but from a "philosophical" point of view it 

is very interesting to see how the same dynamical system can show 

perfect determinism on the microscopic level and at the same time 

perfect randomness on a "macroscopic" level. 

It is the interplay of these two apparently incompatible levels 

of description that give the foundations of statistical mechanics 

their fascination. 

5.2 

into 

The Kolmo~orov-Sinai entropy 

We consider as before a partition of the energy surface S 

k disjoint cells Ai, i = i,..., k . (This is s slight 
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change in notation). This collection of sets [Ai] is called a 

partition ~, ~ = [Ai~ ; the A i are the 'atoms' of ~. Since 

~(Ai) is the probability (in the microoanonieal ensemble) of finding 

the system in Ai, Kolmogorov defined the 'entropy' (not to be con- 

fused with the thermodynamic entropy) of this partition h(~), in 

enalogy with information theory entropy, as 

h(~) = - ~ o  (Ai) (n  ~o (Ai) , 

Clearly, h(~) ~ O, with the equality holding if and only if 

~(Aj) = i, for some j, i.e., there is complete certainty that 

x @ Aj. (We shall generally ignore sets of measure zero, setting 

~o(C)~n~o(C) = 0 if ~o(C) = O, and writing Aj = S E when 

~o(Aj) = I.) The maximum value which h(~) can take is ~nk cor- 

responding to ~o(Ai) = k -I for all i = I, ..., k. 

Given two partitions A = JAil, i = i, ..., k and ~ = ~B~, 

j = I, ..., m, we denote the 'sum' of the partitions ~ and ~ by 

V ~; ~ V ~ is the partition whose atoms are all (non-zero 

measure) sets A i ~ Bj. The entropy of ~ V~ is, 

h(~,m) = ~ / (A i ~ Bj) ~n ~ (A i ~ Bj) 
i,j 

The Iconditionsl entropy I of a partition ~, relative to a partition 

is defined as 

where 
J 

~(Ai/B j )  = ~(A i ~ B j ) / ~ ( B j )  

For 8 given flow operator ~t' and some fixed time interval ~ , 

we construct the sets ~ Ai' ~2~ Ai' "'" and define ~z ~ as the 

partition whose atoms are the sets {~ All. Kolmgorov then sets 

n-1 i 
h(~,~z ) = lim ~ h( V ~j ~) 

n --~ j=O z 

It can be Shown that h~,#j~) = jh(~,~). The K-S entropy of the 

flow #t is defined as (S for Sinai) 

h(~¢) = s~p h(~,6~) = h~ , 



229 

where h is now an intrinsic property of the flow. It was shown by 

Sinai that a system is a K-system iff h(~,~ c) ~ 0 for all non- 

trivial partitions ~, i.e., for partitions whose atoms are not all 

of measure zero or one. 

We can now specify the precise sense in which K-systems are 

'random' even when the flow is entirely deterministic. As indicated 

earlier the atoms of the partition ~ [Ai} , i = i,..., k, corres- 

pond to different possible outcomes of the measurement of some dyna- 

mics1 function f(x), i.e. if x & A i then the result of the 

measurement will be ~i' etc. (Since the set of outcomes of the 

measurement is finite, being equal to k, k < ~ , the measurement 

is a 'gross' one. It need now however be restricted to measuring 

just one property of the system; we can replace f(x) by 8 finite 

set of functions.) The probability (in the microcanonical ensemble) 

of an outcome ~i is ~o(Ai) ~ p(~i). Now if these dynamical 

functions were measured first at t = -Z , and then at t = O, the 

joint probability that the result of the first measurement is ~j 

and the result of the second is ~i' is equal to the probability 

that the dynamical state of the system x at the time of the pre- 

sent measurement t = 0 is in the set A i ~ ~D Aj, i.e., P(~i' ~j) = 

~o(A~ ~ ~z Aj). The conditional probability of finding the value 

i' if the result of the previous measurement was ~j, is 

p(~i/~j) = ~(A i ~ ¢, Aj)/ ~(~z Aj) = ~(A i ~ ~ AO)/ ~(Aj). 

In a similar way the probability of finding the result ~i at t=O, 

given that the results of the previous measurements st times 

-~, -2~, ..., -n5 were ~i I' ~i 2' .... ' ~in ' 

... D~n~ A~ )/ P(~i/~il""'~in> = (Aide All n 

~o(¢~ Ail ~ ¢=Ais .-. N Cn~ A~ ]. 
It can be readily shown that 

n 
h(~,¢~) = lim h(~l V ¢k,~) = lim [-~p(~l,~i2,..., ~i ) 

n~ k=l n--pm n 

k Kil x ~- p(~il ,.-., ~ 
i=l 

i n ) ~nP(gi/Ki I,''', ~in) ]} " 

Hence h(~, Cr) ~ 0 for all non-trivial partitions implies 



230 

that no matter how many measurements of the values of f(x) we make 

on a system at times, - ~, ..., -n~, the outcome of the next 

measurement is still uncertain. (N°B. the measurements are 'coarse' 

since ~(A i) > 0). 

VI. ERGODIC PROPERTIES AND SPECTRUM OF THE INDUCED UNITARY 

TRANSFORMATION 

It is possible, and for many purposes useful, to consider the 

Hilbert space L 2 of square integrable functions on the energy sur- 

face S (Koopman). The integration here is again with respect to 

the microcanonical ensemble density dx ; ~ (x) ~ L 2 is s complex 

valued function of x 6 S, such that 

s 1712~ 

The time evolution ~t then induces a transformation U t in L 2, 

~t T(x) = T [~t(x)7 

which is unitary 

f i u t  ~1 ax = J ax 
( 

2 IWI 2 

We may therefore write U t = exp [itL] where iL is the generator 

of U t. For a Hamiltonian flow with H = H(ql,..., qn' Pl' "''' Pn ) 

iL is the Liouville operator or Poisson bracket 

• qi ~Pi 9Pi Oqi " 

There is an intimate connection between the ergodic properties 

of the flow and the spectrum of U t which is of the form exp(itA) , 

with ~ in the spectrum of L. Clearly ~ = 0 is always a discrete 

eigenvalue of L corresponding to the eigenfunction ~ = const. 

The following equivalences and implications can be shown to hold: 

K-property =z~ absolute continuity of the spectrum of L with 

respect to Lebesgue measure (on the space orthogonal to the con- 

stants) z~ mixing ~=~ continuity of the spectrum ~z~weak mixing m=~ 
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ergodicity 4=~ ~= 0 is a simple eigenvalue. 

This may be a good place to note that, due to the discrete nature 

of the energy spectrum for finite quantum systems confined to a 

bounded domain V, there will be no mixing (decay of correlations) 

in such a system. For such quantum systems we do not therefore gain 

anything from the use of ensembles and we are forced to look at the 

infinite volume limit for signs of long time irreversibility. The 

remarkable thing about Sinai's result for hard spheres is that it 

shows that finite classical systems can and do have purely continuous 

spectra. (Note that when Planck's constant h-~0 the number of 

energy levels between some fixed E and E + ~E becomes infinite.) 

VII. INFINITE SYSTEMS 

Since the number of particles contained in s typical macroscopic 

system is very large (~10 2G) there is great interest from the point 

of view of statistical mechanics in the ergodic properties of iafinite 

systems (corresponding to the thermodynamic limit in equilibrium sta- 

tistical mechanics). As I indicated in the introduction, 

there are still some serious conceptual problems about the nature of 

the ingredients, in addition to ergodic theory, which are necessary 

to get the right physics. I shall therefore be extremely brief here. 

The natural setting for this discussion is the more abstract 

form of ergodic theory. This theory deals typically with the triplet 

(X, ~, ~t), X is s space equipped with a measure ~ which is left 

invariant by ~t" (I have left out explicit mention of ~ the col- 

lection of measurable sets). ~t is a flow if t is a real variable 

and 8 discrete transformation if t is an integer (in which case 

~n = ~n and we can write the triplet as (X, ~, ~)). The triplet 

(X,~, ~t ) is usually referred to as the dynamical system. 

In our discussion of finite Hamiltonian systems we had X = SE, 

= microcsnonical measure (ensemble), and ~t the time evolution 

given by the solution of the Hamiltonian equations of motion. All our 

analysis can be easily translated to the more general setting. Thus 

we say that the dynamical system (X, ~ , ~t ) is ergodic if for any 

set A C X, which is left invariant by ~t' ~(A) = 0 or ~(A) = i. 

Equivalently (X, ~, ~t) is ergodic if there does not exist another 

measure ~ ~ , which is absolutely continuous with respect to~ , and 

is also invariant under ~t" 
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We say that ~i is absolutely continuous with respect to ~ if 

~(A) = 0 ~ ~l(A) = O. When ~! is absolutely continuous 

With respect to ~ we can write d~ I = @(x)d~ , i.e. ia' has 

an 'ensemble density' with respect to d~ . 

It should now be clear what is involved in the ergodic theory 

of infinite systems: X will be the space of infinite configurations 

(locally finite), ~ will be some stationary measure under the time 

evolution ~t assuming this can be suitably defined. It may now 

be much mere difficult to justify ~ priori the use of the Gibbs 

measure @t a given temperature and chemical potential) and those 

absolutely continuous with respect to it as the only physically 

suitable measures (assuming there are also other stationary measures 

available) than it was to argue in the finite system for the use of 

ensembles with ensemble densities. I will leave the discussion of 

this to Professor Hsag and only refer you now to Table 1 for some 

of the results known for infinite systems. 
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ApDendix: Ergodic properties of simple model system with collisions 

We are interested in the ergodic properties of dilute gas sys- 

tems. These may be thought of as Hamiltonian dynamical systems in 

which the particles move freely except during binary "collisions". 

In a collision the velocities of the colliding particles undergo a 

transformation with "good" mixing properties (cf. Sinai's study of 

the billiard problem). To gain an understanding of such systems we 

have studied the following simple discrete time model: The system 

consists of s single particle with coordinate ~ = (x,y) in a two- 

dimensional torus with sides of length (Lx, Ly), and "velocity" 

v = (v x, Vy), in the unit square v x ~ [0, i] , Vy ~ [0, I] The 

phase space ~ is thus a direct product of the torus and the unit 

square. The transformation T which takes the system from a dyna- 

mical state (~, ~) at "time" j to a new dynamical state T(~,~) 

at time j+l may be pictured as resulting from the particle moving 

freely during the unit time interval between j and j+l and then 

~From paper by S. Goldstein, O.E. Landford III and J.L. Lebowitz. 
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undergoing a "collision" in which its velocity changes according to 

the baker's transformation, i.e. 

T(r, Z) = (r + Z, BZ) 

with B the baker's transformation defined in Section 5, 

B(Vx,Vy) = 

I ~ lv (2v x y y), o ~ v X ~ 

(2v x - I, !v2 y + @), @ ~ v x ~ 1 

The normalized Lebesgue measure d~ = dxdydvxdvT/LxLy = 

dr dV/LxLy in ~ is left invariant by T. We call U T the uni- 

tary transformation induced by T on L2(d~), UT~ = ~ • T. Our 

interest lies then in the ergodic properties of T and in the spec- 

trum of U T. 

We note first that the transformation B on the velocities is, 

when taken by itself as a transformation of the unit square with 

measure d~, well known to be isomorphic to a Bernoulli shift. It 

therefore has very good mixing properties. 

The ergodic properties of our system which combines B with 

free motion turn out to depend on whether and satisfy 

the independence condition (I), 

L-I ~i ~ integers nx x + nyL for n x and ny 

unless n x = ny = O. (I) 

Theorem i: When (I) holds, the spectrum of UT, on the complement 

of the one-dimensional subspace generated by the constants, is absolute 

ly continuous with respect to Lebesgue measure and has infinite multi- 

plicity. 

It follows from Theorem i that when (I) holds the dynamical 

system (~, T,~) is at least mixing. We do not know at present 

whether it is also a Bernoulli shift or at least a K system. 

Theorem 2: When (I) does not hold the system (~, T,~ ) is not 

ergodic. 
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I. INTRODUCTION. [i] 

i. i The model 

The isotropic Heisenberg model represents a magnet as s system 

of N spins S, fixed at the sites of a lattice and coupled through 

so-called exchange forces, described by the Hamiltonian 

~ (i.i) 

where ~ = T(K-~) is the exchange interaction between lattice 

points a and b ; g~ and g~- x =.q~tLS~ are the spin operators, 

which obey the usual angular momentum commutation relations: 

(i.2) 

(we set ~ = i throughout). We recall that S~ is hermitian and 

that ~I = (~)t 
It is sometimes convenient to express the Heisenberg Hamiitenian 

in terms of the Fourier transforms o f  the spin operators, defined as 

with the inverse relation 

< = ' z e 

where the wavenumber ~ takes N values inside the first Brillouin 

zone of the reciprocal lattice. (From now on, except where necessary 

to avoid confusion, we shall not explicitly indicate the vector charac- 

ter of the wavenumbers ~ ). 

The operators obey the following commutation relations: 
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: +_ S~t~ ~, 

+ 

moreover, 

(1.5) 

The Hsmiltonian (i.i) is easily transformed into 

N 

where 

(i.7) 

(with the convention: Js8 = 0). 

symmetry of Jab leads to 

(1.8) 

Note that the reality and inversion 

T (g,) = T T(-#). (1.9) 

1.2 0ri~in and validity of the Heisenberg Hamiltonisn 

In order to understand, in a very naive way, the physics under- 

lying the model Hamiltonian (i.i), let us go back to Heisenberg's 

original remark that exchange forces, as they appear in the elementary 

(Heitler-London) theory of the stability of the hydrogen molecule, can 

give rise to energies of the order of those observed in ferromagnetic 

transitions ( k~Tc ~'~ 0.i eV, where T c is the critical tempera- 

ture ). 

In this calculation, we consider the lowest-lying stationary 

states of 8 system of two electrons, i and 2, in the presence of two 

fixed protons, a and b, described by the Hamiltonian 

whe re 

I--I : Ht~ + Hzb * H ' ,  (l.lo) 
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and 

H~ - P~ ~ 
2 w I ' ~  

(i.Ii) 

~' = g~ + e ~ gz ~ 
Y'QI~ C,~. f~l, C,~ (1.12) 

One approximates the eigenfunctions of H as products of the 

(4%) atomic wave functions ~(~) , solutions of the equations 

(1.15) 

To satisfy the Pauli principle, the total wave functions have to be 

antisymmetric with respect to permutation of the electrons; one then 

writes them as 

(.-) 

where ~-A is the antisymmetric eigenfunction, and ~[s one of the 

three symmetric eigenfunctions, of the total spin ~T =S, +~L , i.e 

with ~= O, m : 0 for ~ ~ and ~ = I, m = +i,0,-i for ~ s 

One defines the overlap integral I , Coulomb integral V 

and exchange integral U as 

I = I,~,,-, '('[(:~)%0) 

U = I,L'r,~ 'r, ?~O>~Jm/~' gl))~),Iz~. (1.16)  

Averaging the total Hamiltonian with the approximate wave functions 

) , one finds for the singlet (+) and triplet (-) states, the 

energies 

u/±U g,. = 2 e - ~ -  - ,,- z E ' ±  U 
4 t I z l  ~- (1.17) 
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and the energy gap between the two states is thus 

:I=£'~-~_ :z ~ ~ U) (1.18) 
4 - 1 r l  + 

J turns out to be negative end the ground state is therefore the 

singlet state with sntipsrsllel spins. 

Now, if we forget about the higher excited states, the energies 

(1.17) may be labelled according to the spin quantum numbers ~ and 

m , and obtained as eigenvalues of the following effective Hamiltonian 

acting only on spin variables: 

(1.19) 

Indeed, 

, . ,  st-5;] Z (1 .20 )  

has the eigenvalues 

Z 

i.e. 

--- - -  ~" ( 1 . 2 2 )  ~'t--Ii r'z=+l ,Oj-f  LI ) 

i d e n t i c a l  to ( 1 . 1 7 ) ,  excep t  f o r  an un impor tan t  cons tan t  s h i f t .  Thus 

we see that, although all spin-spin interactions are neglected in this 

theory (see (i.I0) - (1.12)), the Pauli principle enables us to 

specify the space part of the wave functions through their spin quan- 

tum numbers, which leads to the effective coupling (1.19). 

Heisenberg generalized this model Namiltonisn to describe the 

lowest-lying states of 8 megnetic solid. In the absence of exchange, 

the ground state would be (ZS~4)~ - times degenerate; in the corres- 

ponding reduced Hilbert space, the effective Hsmiltonisn (i.i) removes 

this degeneracy and leads to ferromagnetism (3->o) or antiferro- 

magnetism (~<o) Note that one expects 3-A~ to be of short renge 
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(first or second neighbours). This generalization to real solids is 

of course a highly nontrivial problem: a solid is not a giant hydro- 

gen molecule! Moreover, other mechanisms (indirect exchange, super- 

exchange) exist, which also lead to effective Hamiltonians of the form 

(l.1). 

The Heisenberg model is known to describe satisfactorily a large 

class of ionic solids which exhibit ordered magnetic behaviour, e.g., 

EuO , CrO 2 (ferromagnets), MnF2, Mn0, RbMnF 3 (antiferromagnets). 

However, in many cases, one has to generalize the Hamiltonian (1.1) 

to take account of various sorts of anisotropy; 

describe uniaxial or planar magnets by writing 

We shall not enter into these theoretical refinements and shall limit 

ourselves to the isotropic model. Then the Hamiltonian (1.1) depends 

only on scalar products of spin operators, and is therefore invariant 

under simultaneous rotations of all the spins. Consequently, the 

total spin is an invariant of the motion: 

M , ~_- S~ = o~ ( l . 24 )  

as may be verified from (i.I) and (1.2). Note that this does not 

imply that all properties of the system will be isotropic, since the 

spins are located at the sites of a lattice, the symmetry of which 

will in general be reflected at the macroscopic level. To make things 

as simple as possible, we shall only consider Bravsis lattices with 

cubic symmetry. Indeed, we shall be even more specific and limit 

ourselves to the case of ferromagnets. These may be defined by the 

fact that ~(~) has its absolute maximum at q = 0, which reflects 

the fact that the (essentially positive) interaction Jab favours 

the parallel orientation of the spins (this point will become evident 

in part VI). We shall make use later of the fact that J(g) may be 

expanded around this maximum: 

Tco) ] 
In particular, when the interaction is limited to z nearest neigh- 

bours, 

one may, for instance, 
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---" ~T[ 1-(~s~''''] , (1.26) 

where ~ is the distance between nearest neighbours. 

In the following section, we shall show that neutron scattering 

experiments allow the measurement of time- and space-dependent spin 

correlation functions in Heisenberg magnets. We shall then, for com- 

pleteness, recall some of the general properties of these functions. 

Finally, their theory will be reviewed in the three temperature 

domains of major interest: the low temperature spin wave region 

(T~Tc) , the paramagnetic region ( T ~  and the critical region 

If. NEUTRON SCATTERING EXPERIMENTS AND SPIN CORRELATION FUNCTIONS [2 ] 

Slow neutrons, with wavelengths ~ of the order of a typical 

lattice spacing (~ 4~) , have energies 

E = - ~ 0 . ~  c V  ( 2 . l )  

of the order of ~aTc This is the reason why they are excellent 

probes for studying spin fluctuations in magnets. Following Van 

Hove [3], we shall now show that, in the Born approximation, the 

cross-section for the scattering of neutrons by a Heisenberg magnet 

is very simply related to time- and spsce-dependent correlation 

functions. 

In a scattering experiment (see Fig. 1), we direct at the sample 

a beam of neutrons with momentum ~ ~ , described by a plane wave 

function 

I~  = ~ £ (2.2) 
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. , .  

- - . ) '1 '  

(_D_ is the volume of the laboratory). At large distances from the 

target, the outgoing wave may be analyzed as a superposition of final 

states 

2P'I 

with momentum ~ Instead of ~ , 

the polar angles ~ and 

( 2 . 3 )  

usual coordinates are 

, and the energy transfer 

Z ~  

One measures the  ( i n f i n i t e s i m a l )  number dN o f  n e u t r o n s  coming ou t  

pe r  u n i t  t i m e ,  w i t h  a momentum i n s i d e  the i n f i n i t e s i m a l  e lement  

~ 6  around ~'~ or~ e q u i v a l e n t l y ~  w i t h  an energy  t r a n s f e r  between 

and ~+~ , in the solid angle ~ = ~i~ ~d~d~ The 

scattering cross-section is then defined as the ratio of the number 

of scattered neutrons dN/d~ d~ to the incoming flux (~l~)~/M : 

( 2 . 5 )  

(N is the total number of neutrons). The number dN is N times 

the probability t~Jg~ that a neutron makes the transition from state 

~L to state ~ , multiplied by the number of final states in 
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wave states in momentum space is 

by 

Since the density of plane 

-gL/fn 3 , we arrive st 

~'~- = M~'°'~ ££ W ~ .  (2.6) 

In the Born approximation, the transition probability is given 

' - 7 =  ( 2 . 7 )  

where the sums run over the energy eigenstates of the spin system, 

= ~ a~p(-~g.) is the corresponding canonical partition function 

at reciprocal temperature ~ ~(k~T) -I and ~.~g,-~ . This 

formula differs from the well-known "golden rule" of second-order 

perturbation theory in quantum mechanics only by the fact that one 

sums over all initial and final states of the spin system, weighting 

the initial states by the canonical probability exp(--~.)/~ The 

magnetic interaction between the neutron and the spins in the system 

may be written as 

"L~-= 7_ v CK-<)-s~ (2.~ 

if the neutron beam is unpolarized and if one does not measure the 

eventual neutron spin polarization. Its matrix elements can be cal- 

culated as follows (see (2.2-3) and (1.3)): 

: Z <,I<AI,,~)" ~. ,~,R ¢ V(,a-r , )  
(k 

z <~I s-~ e'(~i-~') '~'l '> 

<i ? = -- V~" ~ ~}~ 

where we have introduced the momentum transfer 

(2.9) 
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...% 

~- _ ~ -  :~, , ~.~o~ 

end the Fourier transform of the interaction ~CR) 

Substituting (2.7) and (2.9), we find that the scattering cross. 

section can be written as 

_ ~ ~ • ~ 

~ ~n ~ 2~ ~,~ 
G~,~,~) 

where 811 the information about the spin system is contained in the 

tensor 

To put this function in a form independent of the (unknown) 

energy eigenstates of the spin system, we replace the Dirac delta 

function by its usual representation 

and we get 

where 

s ~ , , ~  -~ ~,~ c ~''~ r,~" ~ ,  

(2 .1~)  

(2.15) 

(2.16) 
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(we used the closure relation ~ > < ~ =  ~ ) ; the brackets indicate 

an average over the canonical distribution and 

S t* ('4 = #_EH~ S~,w e-~ ~, (2.17) 

is the Heisenberg picture of ~ 

spin operators ~ , we have: 

Going back to the localized 

( 2 . 1 8 )  

with 

(2.19) 

The functions ~(~,~) thus turn out to be the four-dimensional 

Fourier transforms (over time and space) of the two-spin correlation 

functions Q~(~) 

In the expression (2.12) for the cross-section, it is possible 

to separate out 8 part corresponding to pure forward elastic scatter- 

ing. Indeed, when t--P ~ or when l~-Fu~-~ , the two spins a 

and b in (2.19) must become statistically independent: 

*~ < S* 

(<S~(~)~ is independent of 8 and t). We can then separate 

this limiting value by writing 

where 

(2.21) 

<s.o] 2 (2.22) 

This leads to 8 similar separation for S~@(~,W) : 

w~ k'¢ 
S C~,~) =~5~(~ '~3+2"N<s~><s~? ~,° ~(~) " (2.23) 

'he second term corresponds to forward elastic scattering, which cannot 
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b e  distinguished from the unscattered beam. Above the critical 

temperature, <S~ = O . Below To, if we study a single ferro- 

magnetic domain and choose the ~ axis parallel to ~ , only 

~I(I,~ ) will contain such an elastic term. In the following, we shall 

forget about this uninteresting part and, without indicating it ex- 

plicitly, only consider the inelastic function ~*~,~] 

We have up to now considered correlation functions ~ ~ (and 

S~ ) with ~,~=~,~,~ . From now on, we shall use instead the 

variables (+, -, z), which have the advantage that the only non- 

vanishing elements of the correlation tensor ~K~ are P~ , 

~*- and ~-+ This follows from the fact that the Heisenberg 

Hamiltonian conserves the total spin, which implies that, in the 

definition (2.16) or (2.19), the operators S ~ and S ~ must change 

the total spin in exactly opposite ways. From the definition of the 

raising and lowering operators SZ=Sx± ~S~ , one readily obtains 

the relations between the functions p~ in variables (x, y, z) 

and (+, -, z): 

' ( r + - ~ n - O  

r ,~  = _ ~ - =  i(.,_n -÷) 
H 

III. SOME GENERAL PROPERTIES OF T}IE SPIN CORRELATION FUNCTIONS L4] 

3.1 Hermitian symmetry 

Since the functions S~,~) are measurable quantities, they 

must be real: 

__ ]~ 
S~r'(~, ~) [-~'~(~I'~, ~ ( ~ ' / ~ - - ÷ ' - ' ~ ) "  (~.l) 

This can be readily proved if one starts from the definition (2.13) 

and uses (1.6) or 

< . I  s* l = < - I  (3.2) 
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Taking the proper  Fou r i e r  -bransfoi--~_s (see (2.1~) and (2.18)), one 
ob ta ins  the corresponding relations f o r  p ~ ( @ }  and Pfft-~) : 

"~  (_~:) ]* 

(3.3) 

3.2 Detailed balance 

• he functions S~(~,~) satisfy the relation 

~3 

S~O(~,~) = e-  k 7 5  °~ (-~,-~) (3.~) 

To establish this, start again from the definition (2.1~), permute 

the summation indices n and m and use the identity 

: ~-O ~ g-~ ~ (~ + ~). 
(3.5) 

Eqs. (3.1) and (3.4) show that it suffices to know the real functions 

~P(~,~) along the positive ~ axis, in order to possess all of 

the information concerning spin correlations (and, more generally, 

all linear response phenomena, through the fluctuation-dissipation 

theorem). 

3.3 Lattice symmetry 

~he space dependence of the correlation functions must of course 

have the symmetry properties of the lattice; in particular, the 

correlation functions are invariant under lattice translations and 

inversion: 

(3.6) 

only depends on the relative distance ~-~ ; similarly, 
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and 

= S 

(3.7) 

(3.8) 

3.4 Spin-rotational symmetry 

3.4.1 Sum rule 

Since the total spin is an invariant of the motion (see (1.24)), 

the functions ~to (~) are time-independent 

3.4.2 Symmetry of the correlation tensor 

In the paramagnetic region (T~T¢) , there is no spontaneous 

magnetization and hence no privileged direction. The full invariance 

of the Heisenberg Hamiltonian under simultaneous rotations of the 

spins (or a rotation of the spin coordinate system) then implies that, 

in addition to the relations (2.24), we must have: 

~ - ~ P ~ (3.1o) 

the other components being zero: 

~ = p~ .... = O (3.11) 

Or, in the (+, -, z) variables, we have: 

~ r ÷° p-+ 
= -- -- -- - (3.12) 
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The whole ~g~ tensor is thus reduced to a single scalar function, 

P~ (~) ~ : P~ ({) =__ < {m) - s~ (o) 
3 

(3.13) 

with corresponding definitions for ~(~) and ~(llw] , from (2.15) 

and (2.18). 

In the ferromagnetic region t<% , the rotational symmetry is 

broken and one is left with the three independent functions, ~ ~ , 

D +- and P-+ 

IV. LOW TEMPERATURE THEORY. [5] 

4.1 Spin waves 

4.1.1 The ground state 

An essential property of the ferromagnetic Heisenberg model is 

that its ground state and lowest excited states are known exactly. 

If the choice of the spin coordinate system is such that the spon- 

taneous magnetization is aligned along the negative z direction, 

the ground state eigenvector is 

I o ' 7  = l - s , - s ,  . . .  (4.1) 

in the localized spin representation 

defined by 

S ~.l~,> : ~ I~ (4.3) 

The ground state energy is easily found: 

= -- ~S ~ 7(q-~o)1o2 ) 
(4.4) 
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in particular, if the interaction is limited to 

bours, 

6"° =- - ~S~ 3-'- 

z nearest neigh- 

(4.5) 

4.1.2 Lowest excited states 

To find the lowest excited states, we start from the ground state 

and raise one spin. Because of the translational symmetry of the 

lattice, we can deduce from an argument similar to Bloch~s theorem 

in solid state physics, that the wave function must be a linear com- 

bination of the following form: 

I~ '> = c F__ e ~T'~ s~ lop = c s~ Io >, <4.G) 

where C is a normalizing factor. ~ o  establish that [~@> is an 

eigenfunetion of H, it suffices to verify that 

because (4.7) implies that 

(4.8) 

From (I.i) and (1.2), we get: 

whence 

= - ~  
~ c  

( c 4- --11 :r~o s~s • +s~s~ s t ]  lo> 

: -~_ T~ (s~ ~+~-s~ s~)Io> 

(4.9) 
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eLTns  -- 

-- 2S ~.T'(o) - s ]  1 0 > ,  

(#. io ) 

which justifies (4.7) with 

the Bloch spin wave dispersion relation. Note that 

~% = ~_~ ~ 0 (~.12) 

and that t~% only vanishes at q = O, since ~C$) is an even func- 

tion of q and has its maximum value at q = O. Near this point, 

~} behaves as follows (see (1.25) and (1.26)): 

~0~ ~__ ZST(o)  o4, ~z (4.13) 

i.e., for nesrest-neighbour interactions, 

The normalizing factor C in (4.6) is obtained from the condition 

C ~ = 

(~.15) 

whence 

I (4.16) 
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We thus proved that the operator 

(4.17) 

acting on the ground state,"creates" a spin wave with energy ~$ . 

We shall also make use of the following relation: 

[H, s ]lo>= o, (4.18) 

which is readily established by a cslculstion similar to (4.9)-(4.10). 

We finally remark that the same type of calculation can be made 

for sntiferromagnets. However, in this case, the ground state and, 

afortiori, the lowest excited states are not known exactly. One finds 

spin waves with an energy ~ ~ for small values of q. 

4.1.3 Higher excited states 

It is easily verified that a two-spin-wave stste 

is not an eigenstste of the Heisenberg Hamiltonian. For spins 1/2, 

for instance, this basis is overcomplete, since there exist N(N+I)/2 

states of this type (N(N-I)/2 for q I q', plus N for q = q'), 

while there can only be N(N-I)/2 states with two spins up, in the 

localized spin basis (4.2), Going back to the definitions (4.6) 

and (4.17), we see that the error comes from the fact that, in 

(4.19), we include unphysical situations where the same spin is 

raised twice. This error is of order I/N and remains of this 

order in an n-spin-wave state, as long as n is finite. However, at 

any finite temperature, the number of spin waves is of order N and 

the error is not negligible in the thermodynamic limit N-~ . This 

difficulty has been studied by Dysen ~6] ; in his very remarkable 

work, he showed that the independent spin wave states, although form- 

ing an overcomplete basis, remain a suitable approximation ss long as 

the fraction of reversed spins is small (in fact, up to temperatures 

T~T~  J~ ). The physical reason for this rather surprising re- 

sult, which will become clear when we come back to Dyson's results 

(see below, Eqs. (4.30), (4.45) and (4.48)), is that the corrections 
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to the free spin wave theory may be interpreted ss arising from in- 

teractions between spin waves and are therefore (essentially) pro- 

portional to the square of their density n/N. 

Let us first consider the independent spin wave approximation, 

where one takes as eigenstates of the Heisenberg Hamiltonisn the basis 

~ (4.20) 

this amounts to assuming that the commutation relations (4.7) and 

(4.18) are true in general: 

-- -- (4.21) 

In the basis (4.20), it is easily verified that the operator ~ 

defined in (4.17)~ and its hermitian conjugate 

¢% _ SI~ 
. . - - - - - - ' - -  j 

only have the following non-vanishing matrix elements: 

(4.23) 

= n$ *4 , 

(¢ .24)  

i.e., they behave as the creation and annihilation operators of the 

second quantization formalism. In particular, (4.24) implies that 

they obey the boson commutation relations: 

k'r (4 .25)  ] = , 

and that 

^ (4.26)  n~. --_ o,,+~ o,.~. 
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is the operator for the number of spin waves q. 

The Heisenberg Hamiltonisn is thus reduced to the free spin wave 

Hemiltonien 

A 

Ho = Eo • 7 -  ~ . <4.27) 

Note that,  comparing (4.25) with the exact commutation re lat ions 
(1.5) of S~ __ and S% , we must conclude that the operator 

has been approximated by its eigenvalue corresponding to the ground 

state I 0> : 

~ N S ~r gg -- -- g~,o (4.28) 

Dyson's results go further than this simple approximation: he 

has shown that the first corrections to the lowest order model (4.27) 

appear as an interaction between spin waves, such that the Hamiltonian 

becomes 

where 

and 

v~ '~ ~(P~,O + " (4.3o) = ~ 4 ~ ,  e CLr_ P CLr O~p 
Z ~ P,2,r 

~(p,9, r) = T(r-p) + ~(~+P)-~'CP) -~'(r-p-@) 

- i [ ~ ~ ~ ~ ~-~-~] 
(4.3i) 

(see (4.11)). The low temperature expansion of the thermodynamic 

properties are correctly obtained from this Hsmiltonisn, a highly 

nontrivisl result indeed, since it is defined in a Hilbert space 

which includes unphysical states. 

4.2 Spin wave theory of the correlation functions 

The free spin wave form of the correlation functions defined in 

(2.16) is easily obtained by evaluating the canonic81 average in the 
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basis of the approximate eigenvectors ~ % >  with the eigenvalues 

We first remark that (4.22) implies that S~(~ (and hence 

~) ) is time-independent. From (4.28), we then get: 

(4.33) 

and, from (2.15), 

~,o ) (4.34) 

this is just the forward elastic scattering contribution that we de- 

cided to separate out (see (2,23)), as it cannot be observed. 

To calculate ~- , we again start from the definition 
| 

(2.15) and go over to creation and annihilation operators, using 

(4.17), (4.23) and (4.21), i.e. (remember that ~S~8) = ~W,S~C~)]) 

We thus find at once: 

where f q 
gas : 

is the well-known distribution function of the free Bose 

i,@ 

(~.37) 

A similar calculation leads to 

= 2S g - i ~ t  ~ - ~  ~$ - 

(4.38) 
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Fourier transforming with respect to time, we arrive at the corres- 

ponding scattering spectral functions: 

S+- ( I , , , , , ) -  3(,,,,-,.,.,,,) 

S"* 1: I,".') --  rrS 

(4.39) 

(4.4o) 

The physical origin of the singular frequency dependence of these 

expressions is simply the fact that, at any given wavenumber q, the 

free spin wave system can only absorb or emit a quantum ~ , cor- 

responding to the creation or annihilation of a spin wave. The ex- 

pressions (1.39) and (4.#0) are very useful, since they allow the 

dispersion relation for individual spin waves to be measured, at low 

temperatures, by neutron scattering techniques. Note that these 

expressions, in accordance with the detailed balance relation (3.4), 

exhibit a very strong temperature dependence. The contribution 

~+- (4' ~) to the scattering spectrum, which corresponds to the 

annihilation of a spin wave, vanishes at low temperatures as the 

average number fq of spin waves with energy ~$ : 

~. ~._,, ,,~ , (4 .4 l )  

whereas the contribution from the creation of a spin wave tends to a 

finite limit: ~÷~$ --, 4- 

When the temperature is raised, the interactions between spin 

waves, as described by Dyson's Hamiltonian ((4.29)-(4.31)), will 

gradually become important. This will have two effects: the spin 

wave frequency will be renormalized and become temperature-dependent; 

moreover, the spin waves will acquire a finite life-time, since they 

will no longer be exact eigenstates of the system. We therefore ex- 

pect that, for example, the correlation function (4.36) will become 

r.;-(.t;) ~ p__~.~g,-~-l-1.1~l r ' ~ - ( o )  (4.42) 

whence the singular delta behaviour of the spectrum (4.39) will be 

smoothed to a Lorentzian shape: 
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@-- 
(4.43) 

centered around the renormalized frequency and with a width propor- 

tional to the damping. The calculation of ~$ and ~} requires 

a careful analysis which we shall not go into; the physical meaning 

of the results is, however, easy to understand intuitively. 

We may divide the Dyson Hamiltonisn (4.29) into its diagonal 

and off-diagonal parts (in the free spin wave basis (4.20)); we 

write: 

= ~ (4.44) 

where 

(4.45) 

~e.d being the off-diagonal part of V~ The low temperature 

behaviour of ~ turns out to be dominated by ~d ; it may be 

obtained by taking the equilibrium average (over the free spin wave 

distribution) of the derivative of ~ ~ with respect to ~ : 

r 

_ ~ ~ z_ ~ ~ (p__o,~,~) 6- ~, (4.46) 

where ~r is the free boson distribution (4.3?). Using the explicit 

expression (4.31) for the function ~ , one shows that the renormalized 

energy ~ tends to the free spin wave value ~ , when T --~ O, as 

follows: 
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where c is a constant. 

The dhmping is due to the off-diagonal part of the Dyson 

Hamiltonian and is given by 

(~.47) 

s 'q. = ~ ~ 2, -',,',--p- 

The physical meaning of this result is evident: the damping of a spin 

wave q is due to its (direct and inverse) scattering with another 

spin wave r, yielding two spin waves (r-p) and (q+p). The tran- 

sition probability for this scattering is given, in the Born approxi- 

mation, by the "golden rule", weighted by temperature-dependent sta- 

tistical factors. The analysis of the temperature and wavenumber 

dependence of ~ is a subtle problem, because of the presence of 

the singular delta function and because one has to consider different 

regimes, according to the relative values of ~ and k~T In 

particular, when ~0$ << k~T z.~. k,~T~ , the damping is found to 

vanish as follows: 

4 (T) ~" :. ,~ T "~ .~v~ ~_ (I~)" . (4.49) 

( ~ [shall be used to denote proportionality.) 
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V. HIGH TEMPERATURE THEORY 

In the paramagnetic region (T~ Tc) , we know (see section 5.4.1) 

that the information contained in the correlation tensor reduces to 

that in the single function 

S~,~) = iN ~,~ ~.~a-~) I~ ~ e-~ <S ~. (~ S~ ~o) ) • (~.l) 

Moreover, it suffices to know the part of this function which is even 

in the frequency variable: 

S+(I , ,~)  - L [ s ( i , ~ )  + S ( ~ , - ~ ] .  (5.2) 
2.. 

Indeed, the detailed balance property (3.zl-), together with (5.8), implie~ 

that S+(q,~) is re~ated to the odd function 

as follows : 

In the following, we shall therefore limit ourselves to the study of 

S+(q,~) and its Fourier transforms 

--cO 

I~ ~,)- ~ ~ ~ (~) e-~ -(F--~,~ 
(5.6) 

which are real and even functions of the time (see (3.7L). We shall 

also find it convenient to define normalized functions ~ab ' ~q and 

by dividing P+ab' ~+q and S + by the equilibrium correlation function 

~;+q (t=O)- ~q(t=O), so that  

P~ (~) - 

equals I at t=O. 

["~ ~) (5.7) 
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The relation (5.a) shows that the even functions (5.2), (5-5) 

and (5.6) contain the essential information in most interesting 

situations, since the factor tanh (~/2) tends to zero when ~ -~0. 

Thus, when we are concerned with the low-frequency behaviour of S(q,W), 

its odd part S-(q,~) becomes negligible. 

We shall now consider the high-temperature limit (~--~0), where, 

at all frequencies, S-(q~3 = 0 and ~q(t) and ~ab(t) are real functions, 

even in the time variable. 

When the temperature goes to infinity, the equilibrium correlation 

function is trivial to compute, since the interactions become negligible 

(exp (-@~4)-~1) and the spins become independent : ~ S~ S~)--~O if 

a i b. From the definitions (2.15) and (2.19), we then find: 

r,c-~=o~ .~ ~ ~ < {-~> _ sc~,,~ (5.8) 

The t ime dependence of  the c o r r e l a t i o n  f u n c t i o n s  < ( t )  remains ,  how- 

eve r ,  a n o n t r i v i a l  N - body problem, s ince the whole dynamics appears 

~n the e v o l u t i o n  of  the Heisenberg sp in  opera to rs  ( 2 . 1 7 ) .  

The classical theory of the high-temperature behaviour of the 

dynamic correlation function, due to de G ennes [7] , is based on the 

computation of the moments 2n of S(q,~), defined as follows: q 

<~..>~ L ~  ,*" ~ -  ,,~ 
---- - ~ (5.9) 

From (5-5) and (5.7), one readily sees that these moments are related 

to derivatives of ~(t) at t=0: 

<~>~ = (_t) '~ ~ f~ .  (t) (5.1o) 
{-= o 

Hence, their knowledge gives us information about the short-time 

behaviour of ~q(t): 

A 2! q--~-. - " - (5 .11 )  

and, provided that this series expansion converges (or at ]east may 

be continued) on the whole real axis, the knowl@dge of %(t) and hence 

~(q,~). 
Although the computational difficulties rapidly grow with n , the 

first few derivatives of 

~,~I = <~c~-%~o~>/<~ ~ '_, (5.12) 
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can be computed, at t=O, by making repeated use of the equation of 

mot ion  of  the  o p e r a t o r  S q ( t ) :  

- t - (5.13) 

and the moments (5.10) take the form 

). 

For example, the second moment is given by 

(5.15) 

(we used the cyclic invariance of the trace: Trace {ABC .... D] = 

Trace ~BC...DA] .... ). The commutators can of course be evaluated 

directly from (1.7) and (1.5): 

(5.16) 

The moments /~~oo2n/n are thus expressed in terms of equilibrium 

averages of products of 2(n+l) spin operators, averages which can 

(in principle) be evaluated exactly, since the spins become statis- 

tically independent at infinite temperature. For later use, let us 

note here that, when q --~ 0, the equation of motion (5.13) and 

(5.16) takes the form of a conservation equation: 

where 3 z 

~. --', o ( 5 . 1 7 )  

is the spin (or magnetization) current: 
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this clearly reflects the fact that S z is an invariant of the 
q=O 

motion. 

De Nennes computed the second and fourth moments and considered 

the two simple limiting situations of small and large wsvenumbers 

(compared to the inverse of the lattice spacing ~- ). 

(i) q ~, . ~ :* 

Here, it turns out that one has approximately 

- ~  -- ~ ~ (5.19) 

a relation which would be exact if S(q,~ ) was a Gaussisn function. 

De Gennes therefore proposed as a reasonable approximation for large 

values of the wsvenumber q: 

) (5.2o) 

this prediction turns out to be in good agreement with experiment. This 

is not too surprising, since large wavenumbers correspond to short dis- 

tances, where the dynamics should take place over short times (of the 

order of j-l), for which the moment expansion (5.11) may be expected 

to converge rapidly. 

(Ji) qT-~ 0 : 

In this limit, corresponding to large distances (and hence long 

times), de Gennes postulated, following Van Hove, that the correlation 

function ~q(t) should obey the (hydrodynamic) laws of macroscopic 

physics, describing the decay of a local fluctuation of the magnetiza- 

tion (or spin) density. Since the total spin is an invariant of the 

motion, the macroscopic magnetization density must obey a conservation 

equation: 

= - V J(g,{) (5.21) 

The vector q is of course limited to the first Brillouin zone. 
However, if one considers polycrystalline powders, one has to average 

~(t), and hence the moments, over the direction of ~, which breaks 
the ~ periodicity in the reciprocal lattice. 
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the thermodynamics of linear irreversible phenomena then predicts that 

the magnetization current density J should be proportional to the 

gradient of the local magnetic field, itself proportional to the mag- 

netization density: 

Z 
(5.22) 

where ~ is an Onsager coefficient and%, the magnetic susceptibility. 

We thus arrive at the diffusion equation 

that ~ q 

with D = ~ /~ . If this equation is supposed to be applicable to 

( ~ = ~a - rb't) ~ ~ab (t) (for large distances and lo~g times), 

taking the space-Fourier transform (~-~ -i~) leads us to conclude 

(t) obeys the following equation: 

whence 

5.2~) 

= e 

0 

I 
- :  ? - R e  - - - - -  

L~j~D7 ~ 
5.25) 

5.26) 

(we took into account the fact that (5.24) is only valid for positive 

times and that ~q(t) is an even function of t). 

If one tries to fit this Lerentzian form to the known moments of 

This argument is more convincing if one considers the relaxation 
function instead of the correlation function. However, in the small 
wavenumber or low frequency limit, these two functions become identi- 
cal. 
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S(q,~), one runs into the (meaningful) difficulty that all moments 

of this function diverge (except for n = O). De Gennes therefore de- 

cided to use (5.26) for frequencies ~ smaller, in absolute value, 

than a cut-off ~c and to put it equal to zero for | ~  The 

two parameters D and ~ can then be fitted to the exact (second 
c 

and fourth) moments, which yields: 

3 

D f 
(5.27) 

<~>~ 

for a cubic lattice with nearest-neighbour interactions J. 
2 

It can be shown that all moments are proportional to q , when 

q--~O, which supports the diffusion ~pothesis (5.26). It is clear, 

however, that one cannot be satisfied with this moment fitting pro- 

cedure, since no reliable information can be obtained from the short 

time expansion (5.11), concerning the (asymptotic) long time behaviour 

of the correlation function. More sophisticated theories have there- 

fore been developed recently in order to justify, on a microscopic 

basis, the heuristic (gaussian and iorentzia~) assumptions inherently 

necessary in the moment method, and also to furnish general methods 

for calculating the shape and width of the scattering function S(q,~) 

in all interesting regions. 

This problem has been approached from different points of view. 

In particular, R@sibois and the author C8] derived a kinetic equation 

for q(t), valid in the whole paramagnetic region (T ~ Tc) , 

through a perturbation expansion and resummation technique, in the 

limit of long range exchange forces, thus generalizing, to time-depen- 

dent correlation functions, the molecular field (or Weiss) theory of 

magnets. With a different and more compact method, Kawasaki ~9] 

arrived at the same result. Although the equilibrium Weiss theory is 

extremely simple (as we shall see in the following section, where we 

shall come back to the limitations of our long range force theory), 

its non-equilibrium generalization is far from trivial. We shall, 

therefore, avoid the rather involved techniques leading to these re- 

sults and rather t~ to show how one can arrive at them by intuitive 

physical reasoning. 

Let us first remark that (5.25) suggests that it is interesting 
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sl. 

to write the Laplace transform of ~ q(t), 

0 

(5.28) 

in the following way: 

I 

S ( ~ , ~ )  --- i.~-,a .~ ~ ,1 . (~ )  j (5.29) 

since the function Gq(~) thus defined is expected to have 8 simpler 

behsviour than ~(q,~ ) (or ~(q,w) = 2 Re ~(q,~a)) itself; in par- 

ticu]ar, if the diffusion assumption (5.26) is correct, G (~J) must 
t t  t l  ~ 2 in the hydrodynamic limit where ~a-~ 0 and q--~O, with W/q 

finite, tend to the (real) limit 

~-~o (5.3o) 

Eq. (5.29) i s  the L a p l a c e  t r a n s f o r m  e q u i v a l e n t  o f  t he  n o n - m s r k o f f i s n  

kinetic equation 

÷ 

o 

with the initial condition ~q(t=O) = i and with 

0 

Of course, writing (5.29) or (5.31) merely amounts to a definition of 

the  f u n c t i o n s  G g ( ~ )  and G q ( t ) ;  to  go any  f u r t h e r ,  one n e e d s  to  

establish independent rules to evaluate them, 

Thi s  i s  t he  r e s u l t  o b t a i n e d  by R@sibois  and t h e  a u t h o r ,  and  by 

Kanawasski: they showed that the kernel ~q(t) can be expressed in 

t e r m s  o f  t h e  c o r r e l a t i o n  f u n c t i o n  p q ( t )  i t s e l f ,  i n  such  a way t h a t  

(5.31) becomes a closed, but nonlinear, kinetic equation for Pq(t). 

More p r e c i s e l y ,  G% i s  g i v e n  by an i n f i n i t e  s e r i e s  o f  s u c c e s s i v e  

approximations: 
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where, f o r  example,  

(5 .~)  

(5.34) 

In this expression, we introduced 

~'I- = i (5.35) 

which goes to i when T--~ (see (5.8)). 

To clarify the physical meaning of these results, we first have 

to show that, if the diffusion assumption, (5.24) - (5.26), is correct, 

then the diffusion coefficient is given by a "Kubo formula" [lO~ : 

where Jz is the magnetization current; defined in (5.18). Indeed, 

from (5.26), we must conclude that 

- ~ ~ ~-- Re ~I~ ~-~ n~4) (5.37) 

(note the order of the limits). Integrating twice by parts, we have: 

O O 

_ L ~ ~ ~ %t~).  
D (5.38) 
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The two first terms disappear, because (s) ~q(t) and its derivative 

vanish when t -~ ~, (b) the first term is imaginary and does not 

contribute to (5.37) and (c) 9t ~qlt= 0 is zero since ~q(t) is 

8n even function of t. We are thus left with 

o 

(5.39) 

(see (5.12) and (5.35)). But, through (5.13)~ 

(5.4o) 

by the cyclic invariance of the trace, and when q .-~0, this average 

tends to (see (5.17), (5.58)) 

I - - 
(5.41) 

if, as everywhere, we suppose the lattice symmetry to lead to sn iso- 

tropic diffusion coefficient. Substituting (5.40) and (5.41) into 

(5.39) and taking the double limit q ---mO and ~-~0 (which exists 

if the diffusion assumption is eorrect)~ we immediately arrive at 

(5.36). The transport coefficient D is thus expressed as the time 

integral of a "Green-Kubo integrand", which is as usual the 8utocor- 

relation function of the current Jz associated with the conserved 

quantity S z 
q-+O" 

Of course, the interest of this exact result is essentially for- 

m81, s~nce the evaluation of the correlation function in (5.36) still 

an N-body problem as difficult as that of ~q(t) involves itself. 

We shall now show that a simple decoupling (or random phase) 8pproxi- 

marion, applied to 
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(5.42) 

leads to an expression of the diffusion coefficient, which is con- 

sistent with the first approximstion (5.}4) of the kernel of the 

kinetic equstion (2.}1). We write 

(s*~ t~)s{, { o ) <  s_%,,fo> s ~_,Eo>,> 

* (~_%, m ~'~,,Co) > <.S'~,CO o_~ - 
The first term does not contribute to (5.42), since 

(5.45) 

by symmetry: J(q") and ~+T, are even functions of the wavenumber. 

For the second term, we note that, by the isttice trsnslational sym- 

metry, 

_ Kc t- 

(5.45) 

(see (3.12), (5.12) and (5.35)), the same result holding for 

-- ~$7' (t) S+q.(O)> . _  Collecting these results, we strive st the 

following spproximstion for the diffusion coefficient: 
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It is now easy to verify that the limit (5.30), with the approximation 

(5.3zt -) f o r  Gq( t ) ,  l e a d s  to e x a c t l y  the  same r e s u l t ,  i . e .  

@---~ o 

if we expand, in -~F hG~2~ q 

~---)0 o (5.4?) 

(5.48) 

and make the same isotropy assumption as in (5.41). 

The mechanism by which the non-markoffian kinetic equation 

(5.31) tends to the markoffian diffusion equation (5.24), is then the 

following: When q--~ O, the kernel Gq(t) tends to the form 

q2f(t), where f(t) decays over a q-independent time scale. The 

~(t), on the contrary, becomes s very slowly correlation function 

decaying function (withes time scale ~q : : q-2), since 9t p'~q=:q2. 

For times t--~ (of the order of rg), we may then approximate 

(5.31) by the asymptotic form: 

D 

(5.49) 

i.e. a diffusion equation, with the definition (5.50) for D. 

Note that this argument can only be valid if, in the small wave- 

number and low frequency limit, the behaviour of the kernel~ Gq(~ ) 

(which depends nonlinearly on the correlation functions pq, them- 

selves) is not dominated by the contributions of these functions for 
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q'~ q. As we shall see, it is the failure of this assumption near T 
c 

which leads to the singular critical phenomena. Outside of the 

vicinity of the critical region, the assumption is correct, but one 

should not conclude that (5.%9) is, in any sense, the leeding term 

of an analytic expansion. All one can safely say is that the dif- 

fusion equation becomes e~sct in the limit q-*0, t--~ ~ , with q2t 

i.e. that Gq(UJ)/q 2 has a finite limit when finite, 0 and 

q --~ O. However, it has 8 singularity at ~= 0, q = 0 and cannot be 

expanded straightforwardly around this point. This is an example of 

the now classical phenomenon of the "long tails" of Green-Kubo inte- 

grands Ii which, as we shall see in the following section, may be 

considered precursors of the critical singularities. 

We shall not examine this problem in detail, but simply show, on 

the example of G~ 2) and at infinite temperature (where ~q = i), that 

the contribution to ~(2) (t)/q2 coming from values of ql q, 

tend to zero as t -5/2 q(or q5) in the hydrodynamic limit, this non- 

analytic behaviour implying of course that G(2)(~)/q 2 is singu]er 
q 

at the point ~= O, q = 0. To this aim, we separate the sum over g~ 

in (5.3~) into two parts, by writing 

(5.5o) 

where G (2) contains the terms with q*> qo and G (2) those with q ~ q ~ ' 
q~ qo' qo being a cut-off wavenumber such that q ~< qo~ B (B 

represents the Brillouin zone edge); this condition can always be 

satisfied when q --~ O. For ~(2) q > , we may proceed as before (see 

(5.%8))and we find: 

(5.51) 

in accordance with (5.a6) - (5.~7)- There is no reason to expect this 

expression to have a non-analytic behaviour for long times: for finite 

values of qt~qo, ~q~(t) may be assumed to be bounded by an expo- 

S(2) however, problems might arise when nential A exp(-~t). In ~q < , 

is expected to be- q ~q, since in the hydrodynamic limit, P q~q 

have as exp C-Dq'2t] . Expanding J(q') and J(q-q') for q and q" 

small (see (l.25))and going to the limit of an infinite system, where 
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i7_ _- LIa  t' (5.52) 

( ~ is the volume of the Brillouin zone), we arrive at the following 
G( 2 ) guess for q ~ : 

3 &  
9'<~. 

4 (5.53) 

"~ Dq2t We then introduce dimensionless variables y = -~'/q and E= 

and find: 

D 

When q .-~ 0 rand t _.~ co , with ~= Dq2t finite, this contribution 

to the Green-Kubo integrsnd vanishes like q5 or t -5/2. It Ls thus 

found to be negligible, which justifies (5.46): even if this t -5/2 

"long tail" behsviour is taken seriously, the integral (5.47) converges 

But the corrections to (5.51) are non-analytic when t -.-->oo , and the 

same is expected for G~2)(~J/q 2 "  near G0 = 0 and q = O. 

Coming back to the general kinetic equation (5.31) and (5.33), 

we see that it allows, in principle, to calculate the correlation 

function in all domains of q and t values. Such explicit calcula- 

tions are of course very difficult, since the kernel is given by an 

infinite series of successive approximations, each of which is 8 non- 

linear functional of the correlation function itself. Computations 

have been made, which justify de Gennes' qualitative predictions and 

lead to numerica~ results of the same order of magnitude. 
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VI. THE CRITICAL REGION 

Remarkable phenomena occur when one approaches the critical temp- 

erature. Fluctuations at long wavelengths become more and more im- 

portant; in particular, the equilibrium correlation function ~a(t=O) 

diverges at q=O. Before describing the dynamical aspects of these 

phenomena, it is necessary that we briefly recall the classical mole- 

cular field (of Weiss) theory of these equilibrium fluctuations 12 

In this theory, every spin is treated as if ~t were submitted to the 

average field due to the others. It is easy to understand that this 

approximation becomes rigorous in the limit of long range forces, i.e. 

if one considers that every spin has a constant interaction J w~th z 

neighbours and one goes to the limit z-*~and J-*O, keeping zJ finite 

(we shall see that kBT c is proportional to ZJ) o 

In this approximation, let us calculate the correlation function 

(5-35) for T~ T c. To simplify the argument, we consider the case 

of Spins S = ½, but the resu]t turns out to be genera]. We first 

remark that the isotropy of the system imp]ies that 

= = 4 (6.1) 
S[~+i) 

may be calculated, for a / b, in the localized spin basis (4.2), as 

the average of S z z is b over the partial canonical ensemble where S a 

fixed, say up (Sa z = + ~): 

(6 .2)  

Now, a spin S in a magnetic field'is described by a Hamiitonian 

H = -~. ~, where ~o= gle~ ($mc)-~ ~, g being the Land6 factor, equal 

to 2 for an electron. We can then say that, in the Heisenberg model 

(I.I), a spin b feels a "field" due to its neighbours, equal to 

cC~-) (6.3) 
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(we have separated the term cor#esponding to the spin a which we fix 

up). The molecular field approximation then consists in evaluating 

(6.2) as if the spin b were in the average field 

-- 

We then have: 

e  l,/z - 

p, # ~ l , / z  q.. £ - / ~"~ ! , /Z .  

(6.5) 

But, to be consistent, we should only retain, from this result, the 

leading term in its expansion in powers of (l/z). For kBT ~f kBTc:'ZJ , 

one has 

• x, ke, T," 
To this order, we may approximate tanh (@~b/2)~_~b/2 and forget 

about the exclusion c / a ~n (6.4), whence 

This equation is easily solved by a Fourier transformation and one 

finds 

The complete Fourier transform (5.35) 5s then obtained by adding the 

missing term raa : 4~(Sa52~ = I; the result is 

{ (6.9) L 

For a ferromagnet, the maximum value of J(q) occurs at q = O. We 

then see that, when the temperature is lowered from T =~ (where ~q = l), 

[q remains finite until we reach a temperature T c = T(O)/(2kB) ' where 

rq=o diverges, indicating the appearance of long range order. Below 
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T¢, (6.9) must of course be modified. In the critical region, i.e. 
2 when q-,O and T--*Tc, we may expand (6.9) to the lowest order in q 

and ~= (T~Tc)/Tc (see (1.25))and obtain 

'l 

T.--~Tc 
where ~ is the inverse of a "correlation length" 

(6.1o) 

,~ --_ ~_, = ~ g_-t/z (6.:Ll) 

The Fourier transform of (6.10) gives the 8symptotic form of the cor- 

relation function ~ab for large distances I~ ~b~: 

(6.12) 

I~-~I~ ~ I F'., - ,-'--; ; 
T.-.-s T~ 

the range of which diverges St T c. This result is the equivalent, 

for the Heisenberg model, of the Ornstein - Zernieke theory of the 

critical opalescence in classical fluids. 

It is now well known that the molecular field theories (Weiss 

theory for magnets, Van der Waals theory for fluids...)do not correct- 

ly describe the critical phenomena. They can only be expected to 

apply to a "precritical" region, where (T - T~/Tc>~ I/z (if Tc is 

taken at its molecular field value), The reason for their failure 

is clear: the critical phenomena appear when the macroscopic prop- 

erties of the system become dominated by the fl~ctuations at very long 

wavelengths (of the order of~), i.e. when ~ becomes much larger than 

any molecular characteristic length of the problem, such as the range 

of the interparticle interaction. But the molecular field theories 

only becomes rigorous when this range is infinite, and taking this 

l~mit first evidently forbids going into the true critical region. 

Modern theories of critical phenomena ~13~ try to describe the 

"critical exponents", which characterize the singular behavioUr of the 

various thermodynamic quantities, and predict: 

(i) That these exponents are largely universal, i.e. independent 

of the details of ~he microscopic interactions and only sensitive to 
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general features of the system (dimensionality, symmetries, ...). 

(ii) That they are related by simple algebraic relations, known 

as "scaling laws", in such a way that only two of them are independent. 

These predictions are well verified experimentally and their theo- 

retical justification has been considerably clarified recently,through 

the remarkable work of Wilson and others [14~. Methods for calculating 

the critical exponents from first principles have even been developed 

for particular models. 

Going into these problems would lead us far outside the scope of 

these lectures. We shall therefore limit ourselves to stating what 

the scaling hypothesis says about the static correlation function ~q, 

namely that in the critical region, i.e. when q and ~ go to zero, 

~q becomes a homogeneous function of these variables 

(in three dimensions). Note that (6.]0) is of ~his form, with the 

critical exponent ~. = 0. Experimentally, ~ is found to be small 

(~ ~ 0.I), hence (6.10) is not far from the truth; but the dependence 

of ~ on the temperature is very different from tbe molecular field 

prediction: if one expresses the divergence of ~ = ~-i as 

the critical exDonenb ~ is found to be about 0.7, instead of 1/2, as 

in (6.11)° 

We are now ready to leave equilibrium and consider the dynamic 

correlation function Flu(t). De Gennes has applied the moment method 

to th~s problem [7~876~Of course, even an approximste evaluation of 

the moments (5.14) is extremely difficult at finite temperature, but 

one can show that only the denominator 

has a singular behaviour near the critical point. The reason for 

this is that the average in the numerator involves spins which are 

interacting (because of the commutators with H) and hence equilibrium 
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correlations at finite distances (of the order of a few interaction 

ranges), which have no critical behaviour. It is then reasonable 

to write, as a qualitative approximation, 

Generalizing the diffusion assumption (5.21) - (5.24) to allow for 

a q-dependent diffusion constant, i.e. writing 

.%. "% 

with. 

.u,, : ~ (6.18) 
"T 

where~q is the static susceptibility at wavemumber q, de Gennes con- 

eluded that (see (5.27))D should behave as follows: q 

])I ( T )  ~ D ( T - - - )  . (6 .19)  

r~ 
Near t he  c r i t i c a l  p o i n t ,  w i th  the  m o l e c u l a r  f i e l d  a p p r o x i m a t i o n  ( 6 . 1 0 ) -  

(6.11) for [q, this theory thus predicts that ~(q,W), and hence the 

neutron scattering spectrum, should have a T orentzian shape (see ]5.26)) 

with a width 

~.÷ r-_ "r~, 

(6.2o) 

~o(~) :: I ~ 
(6.2])  
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. -  t : : 9 '  
(6.22) 

Note that we could have arrived at these qualitative predictions by 

purely macroscopic arguments; indeed, if one makes the generalized 

diffusion assumption (6.17) - (6.18) and supposes that the Onsager co- 

efficient ~ is a slowly-varying function of T near Tc, one immediately 

obtains (6.19), since 7/q behaves as ~q when q--~0. ~ 

Recent experiments have clearly shown that these conjectures are 

wrong and that the above theory cannot be made to ~t the facts by the 

mere replacement of the molecular field approximation for [q by its 

sealing form (6.15). What is observed is ~n agreement with a phen- 

omenological description proposed by Halperin and Hohenberg [15] and 

known as "dynamic scaling laws" or "assumptions" (DSA). These state 

that, in the critical region, the correlation function rq(t) depends 

on the three variables q, t and T only through the combinations~m(q)t 

and q/~ : 

-%J 

where ~ =~-I is related to the temperature trough (6.14), and that 

tbe characteristic frequency ~q) is a homogeneous function of q and 

(6.24) 

(note that (6.20) is of this form, with ~ =z~). Fourier-transforming 

(6.23) with respect to the time variable (see (2.15)),one obtains the 

corresponding assumption for the scattering spectrum: 

"7 " "~ The fluctuation theorem relates the static susceptlomlz~y and 
correlation function as follows: 

where g is the Land6 factor and/B , the Bohr magneto~. 
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. - , .  ! 

(6.25) 

To visualize the implications of the DSA, one may represent the 

critical region as in Fig. Z . In this diagram, the ordinate variable 

is the wavenumber q; along the positive abscissa axis, we plot M= 

the inverse of the correlation length for T~ T c, on the 

negative side, the va~ihble ~ is conventionally taken equal to minus 

the (positive) inverse ~ :~ l&~ vl of the correlation length below T c- 

On the figure, three limiting regions are indicated, where a simpler 

behaviour may be expected to occur: regionl) the ordered hydrodynamic 

region, where q ~  (T~Tc); region~ the transition region, where 

q~>g (T ~_ Tc); region~ the paramagnetic or disordered hydrodynamic 

region, where again q ~  (T~ Tc) . 
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Let us now consider, as indicated in the figure, a straight 

line q = ck , where c is an arbitrary constant; the assumptions (6.23) 

and (6.2%) mean that the correlation function ~q (t) should retain 

the same shape along this line, if we scale the time variable as 

= q~t. The corresponding experimental prediction is then that, if 

one normalizes the scattering spectrum (6.25) to an arbitrary constant, 

its form should remain unchanged, except that its width should vary 

proportionally to qN . When we go around the critical point q=~ = O, 

the "dynamic critical exponent" ~ is assumed not to vary and the 

function ~(x = ~/~), to be continuous in the whole diagram. 

Of course, when we consider the left-hand-side region (T<Tc) , 

we should distinguish between the transverse and longitudinal 

functions ~÷- (t) and ~zz(t) The DSA say nothing about the precise 

shape of the function ~(x,y), and hence of the scattering spectrum, 

except that nothing spectacular happens when one crosses the ~=o 

~:- zz must become the unique ~% function (T=T c) line, where ~ and ~q 

of the paramagnetic region. 

The power of the DSA comes from the fact that (6.2%) relates 

what happens in the whole (q,~) plane and, in particular, in the 

three limiting regions indicated in the figure. To use this fact, 

Halperin and Hohenberg developed a macroscopic theory of spin waves, 

from which it appeared that in region I (~or q(~), such waves remain 

well-defined excitations up to the critical point, with an energy 

~I,}~ (q) :: ~'IZ_ q2 (6.26) 

and a (negligible) damping ~q:: q%/~3/2 (up to a possible logarithmic 

factor). Thus, the scattering spectrum should exhibit well-defined 

peaks (see (%.39),(%.%0)), centered at (plus or minus) the frequency 

(6.26), moving towards ~ =o when T-~Tc, as ~@L::~Tc-T)/T J _  :~ 

[(T c - T~T~ 0"55 ( ~' is believed to be equal to ~ ). The scaling 

relation (6.2%) then implies that the exponent ~ = 5/2 (and that 

(x =~/~ ) behaves as (-x) IlL when x-~- ~ ). Here and in the 

following, we neglect all corrections of order ~ to the critical 

exponents, because these effects are too small to be measured with 

any accuracy and because the theory of dynamic critical phenomena 

below T c cannot be considered today as sufficiently well founded for 

these subtleties to be taken into account~ for instance, in isotropic 

ferromagnets, nothing definite can yet be said about the importance 

of longitudinal fluctuations. 

We can now use the result ~ = 5/2 in region II: when we approach 
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the critical point by lowering q at ~ = O (T = Tc) , the scaling 

relation (6°24), with the implicit assumption that ~ (x = ~/q) is 

continuous near x = o, immediately leads to the conclusion that the 

scattering spectrum, whatever its shape, must have a width proportion- 

al to q5/2: 
~ I  (q) :: q5/2 . (6.27) 

Finally, in region III, the wavenumber q is much smaller than all 

other characteristic wavenumbers in the problem, including ~÷ . Then, 

the macroscopic arguments leading to the diffusive behaviour (5.26) 

should be correct: the scattering spectrum should have a central 

lorentzian peak, with a width 

III 2 
~ (q) ~: D (X÷) q ; (6.28) 

(6.24) then implies that, since ~ = 5/2, ~ (x = ~/q) must behave as 

x llz when x-~÷co, which leads to the following temperature dependence 

of the diffusion coefficient: D(~÷):: ~@ :' . 

The DSA agree remarkably well with experimental Gbservations, not 

only for isotropic ferromagnets, but for essentially all critical 

points (provided suitable additional parameters are introduced to 

take eventual anisotropies into account). The lesson they teach us 

is that the classical theory, based on moment expansions, is intrin- 

sically incorrect: the scaling relation (6.24) with ~ = 5/2 cannot 

be obtained from it, even in region III, where the diffusion assumption 

is expected to be correct. Moreover, one does not see how it could 

ever describe the transition region II, where the scattering spectrum 

passes continuously from the two-peak spin wave shape of region I to 

the diffusion Lorentzian shape of region III. 

It is therefore interesting that the theory based on the kinetic 

equation (5.31 and 33), i.e. rigorous in the limit of long range 

forces,permits to justify the DSA (at least in a precritical region) 

and, in addition~ to determine the shape of the scaled correlation 

function (6.23) - (6.24) [16]. The situation is however only clear on 

the paramagnetic side of the critical region (T~T c) while, in the 

ordered region, it is still a subject of theoretical (and experimental) 

controversy. Let us stress here again that, although this theory is 

the non-equilibrium generalization of the very simple and "classical" 

molecular field theory, it is by no means trivial and not a~ all 

equivalent to the "classical" theory based on the macroscopic 

equations (6.17)- (6.18). 

The error in this macroscopic theory lies in two places. First, 
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the generalized diffusion equation (6.17) is only correct when q 

is much smaller than any other wavenumber in the problem, i.e. in 

region III. Second, the assumption that the 0nsager coefficient 

in (6.18) exists and is regular near T c is incorrect in the whole 

critical region [17] . This is due to the fact that, because of the 

divergence of the equilibrium correlation functions, the mechanism 

which, away from the critical point, leads to the "long tail" beha- 

viour of the Green-Kubo integrands, has here the dramatic effect that 

small wavenumber (time-dependent) fluctuations dominate the critical 

dynamics. 

To show this, let us start again from the kinetic equation 

(5.3]), with the approximation (5.3~) for the kernel Gq. To arrive 

at an equation of the form (6.17), we have to replace (5.31) by its 

markoffian approximation (5.~9), which leads to the definition 

(see (6.18)) 

~(2)__q_~olim Dq(2)~q =q_~olim ~q I:dt ~(2)q (t~[~q~}) . (6.29) 

We know that this "markoffianization" procedure is only allowed if 

the small wavenumber correlation functions ~,do not dominate the 

behaviour of ~ . We shall now show, in the~particular case of the q 
transition region (~ = o), that this assumption leads to a contra- 

diction. 

Proceeding as in (5.50), we separate, in -- ~(2) the contributions 

to the sum over q" in two domains separated by a cut-off qo' with 

q(( qo<~ B. Since the susceptibility ~q behaves as ~q when q--Po 

(see the footnote on page 279), the contribution from q" • qo gives 

(compare with(5.51)): 

(2) ~ dt : :  . ( r q - )  ( t )  
q ~qo o " 

Since the cut-off q restricts the values of q" to be outside the 

critical region, ot^~) is expected to be a finite number, even at 

T c • 
If this was the dominant contribution to ~<2jr ~ the classical 

theory would be correct and (with the molecular field approximation 

for ~ ), we would find q-~o (t) to behave as exp[-~q2t/ 
"q 4 ~exp~- c q t~ . To test this assumption, we substitute this guess 

for pq. in the second contribution, from q'<qo" Expanding everything 

for q and q" small (including the equilibrium correlation functions 

~q" (see (6.10)), we thus get (compare with (5.55)): 
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S O0 
% d3 . ,2]2 dt e 

q q'<qo I ~ ' - ~ ' 1 "  ~t '~" o 

d3q, 
[ l ¢ -  ~ 2  _ #,2] 2 .. 1 

-2 , (6.3l) 

q ~ q o  

which,  when we i n t r o d u c e  the reduced v a r i a b l e  y = ~ ' / q ,  becomes 
(compare w i t h  (5.5~)): 

~(2). led3 [I~-~I 2-y212 . -3 
'7] y IT-~l 2y2[l~-71%y~]': q " (6.32) 

Thus, the assumption that ~(2) is the dominant contribution leads to 

tb_e contradictory result that ~<~)'~ diverges as q-3. The origin of 

this divergence is easily traced back to the presence of the singular 

equilibrium correlation functions ~q_q.and ~q" in the kernel.~ (5.34) 

This proves that, on the contrary, the behaviour of ~q(t) 

near the critical point is dominated by the region q'<qo' i.e. that 

small wavenumber fluctuations determine themselves self-consistently. 

This implies of course that, in the kinetic equation (5.31) and (5.33) 

there is no clear separation between the time scales of the function 

~q(t) and of the kernel ~ (t I{~.]); hence, the equation will q 
(except in region III, where q/~-~o) retain its non-markoffian form. 

We shall now show that, if this fact is properly taken into account, 

this kinetic equation can be shown to justify the dynamic scaling 

assumptions, with the value ~ = 5/2 for the critical exponent. 

We start once again from the approximate kernel (5.3~), limit 

the sum over q" to the dominant region q'_~q< qo and expand everything 

for q'~_ q~_~-~o, using (1.25) and (6,10); the kinetic equation thus 

becomes : 

t o 2 
~t ~q(t) = - F ~ d3q-I d t" (q2.,2)(~_~,/2_q,~) 

q'< qo o (lq_q12 +,~2) (q,~ 2 ~ 2 )  

~.q. (t') .(t') (t-t') , (6.33) 
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where 

~2 %S(S÷I)  ~J (O)2  = - -  ( e . 3 ~ )  

3 A  

To account for the fact that q'~_.q ~ ~, we go over to the reduced 

variables ~ = ~'/q and K = ~/q, which leads to 
• ~ -.2 2~ 2 

't Fq(t)= _fq5 I d3Y ~ tdt" (I~2)(1I-YJ-Y ) 
qo (l~-~ 12~ ~2)(y%Xf) 

y~-~ ~ ~ o 

Pq" - ,~', (t-) Pq (t-t-) (6.35) b_yl ,o , fqy 

We then remark that  the fac to r  ~2q5 in  f ron t  of the in teg ra ls  d is -  
5/~ appears when we introduce dimensionless time variables ~ = ~q =t 

and I~ ~=~q5/2t', in such a way that (6.35) becomes the following 

equation, for the function ~q(~) -- ~q(t) : 

2 ~ ~2 ('I~'~ / ) ( l ~ -Y l  - Y2) 2 

ipqF4j (,T_yisz2 ,) ~y (y5Z2 . , )  <(~_ ~,) . (6.36) 

The variable q now only appears as a factor in the index of every 

function ~ . If th~s equation possesses a unique solution, it cannot 

depend on this arbitrary factor. Hence, we have reduced the kinetic 

equation to the following asymptotic form: 

0 (i ~.~12, ~2) (y2+ ~2) 

~(1~_}15/2 ~,) ~ (y5/2 =.) ~ ( ~ _ { )  , (6.3?) 

for the single function 

= ~)  (6.3s) 

i.e. we have recovered the DSA relations (6.25) and (6.24), with 

= 5/2, in the limit of long range forces and with the approximate 
(2) kernel G . q 

It can be shown that this result is correct to all orders in 
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the series (5.33) for Gq , i.e. that 

(i) when all intermediate modes q',q'',.., are limited inside 

the region q~_q''.., e q~ qo' the introduction of reduced variables 

y', y'',.., and r, ~', ~',... makes the equation dimensionless; 

(ii) that the corrections to this asymptotic equation (the 

contributions where some wavenumbers q',.., are larger than q~ ) are 

negligible in the limit where t-~ and q-~o , with q5/2t finite. 

As expected, one finds that the first corrections behave as 
/ 

q3/2; this corresponds to the "classical" result, where 9t P~(t) 

is proportional/ to q% , i.e. g=~q(t) :: 9q512 t ~q(t) 
,, q9.2 . 

In principle, these results go beyond the phenomenology of the 

dynamic scaling assumptions, since they allow to determine the 

correlation function ~ and the scaling function ~ . Such computations 

have been performed, with the lowest order approximations for the 

kernel Gq, and the agreement with experiment is remarkably good; 

in particular, the scaling function ~(x = ~/q) has the correct 

behaviour and goes to infinity as x 1/2 when x-~oo (in region III). 

Let us however stress again that this theory is, in principle, 

limited to the model of long range forces and that agreement with 

experimental observations is only obtained if one fits the temperature 

dependence of ~ to its measured value. Moreover, we only discussed 

the paramagnetic region; below Tc, the question is still open. 
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I. INTRODUCTION: TEE HARD-SPHERE MODEL INTERACTION 

A basic aim of statistical mechanics is to explain the macro- 

scopic properties of matter from microscopic intermolecular forces 

and laws of motion. Macroscopic properties fall rather naturally 

into two classes, equilbrium and non-equilibrium, and each of these 

classes contains what might be called specific and general properties. 

By general properties we mean those which are more or less independent 

of the nature of the intermolecular potential, while by specific prop- 

erties we mean those which reflect the nature of the potential sensit- 

ively. 

The general equilibrium properties include, for example, the 

existence of the laws of thermodynamics and the existence of various 

phases of matter, while a prominent specific equilibrium property is 

the temperature dependence of the second virial coefficient. Among 

the non-equilibrium properties, general properties might be taken to 

be the existence of an approach to equilibrium as well as the existenGe 

of laws of non-equilibrium thermodynamics. On the other hand, the 

density, and temperature dependence of the viscosity coefficient, of 

the diffusion coefficient and of any other transport coefficient are 

specific non-equilibrium properties. 

The task accomplished by Boltzmann, and Chapman and Enskog, was 

to indicate how the transport properties of a gas of spherically sym- 

metric molecules may be computed from the microscopic properties of 

these molecules in at least a sensible first approximation, nowadays 

called the "dilute gas" limit. As this has been the topic of dis- 

cussion of various lectures that preceded me at this School, I would 

rather concentrate on one pragmatic attempt to go b~yond the zero- 

density limit. I am going to talk about what Enskeg did in this 

direction and we will see how useful it may still be today. I'ii 

try to avoid formalism as much as I can, as I would like to keep my 

feet on the ground. Hints are given, however to help you to go 

further on in the kinetic theory of transport phenomena. 

In a paper published in 1922, David Enskog proposed a modification 

of Boltzmann's kinetic equation. His paper, he says "is the contin- 

uation of an earlier work on dilute gases. More specialized assumpt- 

ions are made about molecular forces, so that theories valid for arb- 
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itrary densities may be given. It is necessary to introduce a new 

hypothesis about the number of collisions, and the theoretical treat- 

ment is new in parts. This will not lead to undue complications, 

sinoe I can build on my earlier results". (See the book edited by 

S.G. Brush, 1972). 

He then starts the second section of the paper saying "We assume 

that we have a gas whose molecules repel one another like hard, smooth, 

perfectly elastic spheres with mass m (in my lectures we shall take, 

for convenience, m = I) and diameter ~." 

The hard-sphere potential function is thus a model, according to 

which, two molecules do not interact until they just touch, when they 

repel each other with infinite force. The forces between molecules 

on collision are impulsive (tcoll ~ 0). This angle-indep@ndent po- 

tential, along with some other relevant and more realistic models, is 

sketched in fugure 1.1, and has the mathematical form 

~(r) = ~ ~ at r ~ Q- 

[ 0 at r > 0 

(l.i) 

where O- is the diameter of the spheres. Besides its simplicity, 

in classical dynamics, the main interest of this model lies in the 

fact that transport properties depend essentially on the existence 

of collisions, and not on their nature. They thus depend primarily 

on the fact that some force exists between molecules, and only 

secondarily on the nature of the force. One could even say that it 

is a secondary matter for these transport properties whether the force 

is one of attraction or repulsion. This is not, however, the case 

for equilibrium properties, such as the virial coefficients of the 

equation of state: In this latter case, the very sign of those 

coefficients depends on the nature of the forces. In recent years 

the hard-sphere model has been extensively used for the study of many- 

body problems. In particular, the equation of state at high densities 

has been studied by numerical methods on high-speed computers and a 

clear suggestion of a first-order solid-fluid (melting) phase trans- 

ition has been found. The computer experiments are, of course, not 

rigorous proof of the existence of the hard-sphere melting transition. 

They must be regarded only as a very suggestive indication, and judged 

on the basis of how this behaviour could be reproduced by infinite 

systems. 
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An interesting question, not yet answered, is whether the virial 

equation of state could possibly predict such a phase transition for 

an assembly of hard spheres. Clearly no phase transition could be 

predicted if, as has been suggested,all the hard-sphere virial co- 

efficients were positive. But the equation of state problem @ is not 

the topic of our discussions here. Thus we return to our original 

topic. 

Point centres 
of repulsion 

Smooth rigid 
spheres (hard 
spheres) 

Square-well 
potential 

O" . ~" 
W 

?(r)~r-~ I~o r~r [oo r~r 
([=~:Maxwell's ~(r)= ~(r)= -E r~Rr 
model) r ~f 0 r~Rf 

Let me point out that another approach to the equation of state of a 

fluid phase is that of Percus and Yevick. These authors took the 

opposite starting point to the virial approach. Rather than attempt- 

ing a series expansion from the perfect gas end, they argued that~ 

near the solidification curve anyway, the Debye spectrum of a fluid 

cannot differ greatly from that of a solid, and they looked for ways 

of computing the differences as a function of density. The Percus- 

Yevick equation of state has been obtained for a hard-sphere gas and 

it reproduces the equation of state of hard-sphere gas, as determined 

by the computer calculations, to within a few percent. We shall not, 

however, discuss the use of Percus-Yevick equation to obtain g(r) and 

so the Enskog transport coefficients for a lf~uld. 
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Lennard- Jones 
potential 

12 6] 

Fig. I.I. Pictorial representation of various 
spherically summetrical potential 
functions. 

As with hard spheres, collisions are instantaneous, multiple en- 

counters can be neglected: the probability of ternary and higher- 

order multiple collisions will be negligibly small; consequently, 

it is only necessary to consider binary encounters. This is not 

however, the case with real molecules; in a gas at high pressure, 

a molecule is in the field of force of others during a large part of 

its motion and multiple encounters are not rare. 

The second assumption that Enskog made was a molecular chaos 

approximation. He claims doing this "in agreement with Jeans" 

(J. H. Jeans, The Dynamical Theory of Gases, Cambridge, 3rd edition, 

1921, pp. 15-16 or else 4th edition, 1925, p.54). Enskog believed, 

on the basis of Jeans' analysts, that for hard spheres the molecular 

chaos assumption can remain valid at large densities. However, Jeans' 

argument applied strictly only to a gas in a uniform steady state. 

In a dense gas, even one composed of hard spheres, there may be some 

correlation between the velocities of neighbouring molecules, because 

of their recent interactions with each other, or with the same nei~du- 

bouts. This may be important in a gas not in a uniform steady state. 

"Thus what Enskog gained in mathematical simplicity is partially off- 

set by inadequacy in the representation of physical reality" (Chapman 

and Cowling, Ref. 2, p. 297). We shall see, however, that Enskog's 

theory accounts for transport coefficients of real gases in a density 

range much wider than expected. "Anyone can get the right answer 

for the right reason; it takes a genius, or a physicist, to get the 
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right answer for the wrong reason", says Lee A. Segel in one of his 

papers. 

The hard sphere model is useful anyway for exploratory calculations 

because, at least, a nice representation of the strong, short range 

repulsive ferces (that is that molecules have volumel) is given. In 

Figures 1.2 and 1.3, hard-sphere collisions are graphically displayed. 

Fig. 1.2. : 

/ 

A collision between two hard spheres, k is a unit 
vector, called perihelio~nvector, for convenience 
of notation velocities of particle "2" are denoted 
with subscript "l". 

There exists a procedure for adapting a hard-sphere potential 

to a more realistic potential like a Lennard-Jones function. If 

the "realistic" potential is ~ (r), a prescription suggested on the 

literature (for liquid metal calculations, however) states that the 

hard-sphere diameters ~ should be obtained through the relation 

( ¢ )  = ~ kT - (1.2) 

where ~ is the depth of the potential well and k is Boltzmann's 

universal constant. The diameters ~ given by (1.2) may be thought 

of as "effective" diameters of the "real" particles. Theycorrespond 

roughly to an average distance of approach during a collision of 

particles with average energy 5/2 kT - ~ . We shall, in fact, come 

back to the problem of prescribing ~ for a moderately dense gas 

in section VI. 
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In the next section we discuss in more detail Enskog's ansatz 

and we introduce his kinetic equation. Seetion III is devoted to a 

discussion of the collisional transfer mechanism introduced by Enskog 

and the hydrodynamic conservation laws. Section 4 deals with the first 

-order Chapman-Enskog expansion of the (asymptotic~ solution of Enskog's 

equation. However, we ought to say that Enskog's equation is only 

valid for times shorter than the mean free time between collisions, as 

has been recently proved. We shall come back to this point in section 

VIII. In section V we obtain explicit expressions for the Enskog 

transport coefficients and we discuss, in section VI, the relevance 

in interpreting the experimental data. (We will be concerned with 

the viscosity and heat conductivity for temperatures well above crit~ 

ical. 

Section VII deals with the square-well extension of Enskog's theory. 

Finally, in section 8 we briefly give comments on some general problems 

related to the very validity of Enskog's equation as a kinetic equation. 

However general derivations of the Enskog equation, as well as the 

controversial and very interesting quations of fluid mixtures and 

transport properties of polyatomic gases, are left out of these lect- 

ures. 

II. FROM THE BOLTZMANN APPROACH TO THE ENSKOG EQUATION 

The Boltzmann equation, already discussed at length in the course 

of this School, is an integrodifferential equation for the one-particle 

distribution function f(r,v,t). In the absence of external force 

fields, the equation reads 

where 

~tcoll. 

coll. I dOl  pdpdT f(~,$~t) f (~,$~; t )  - 

(2.1) 

(2.2) 



295 

Here ~ and v I are the velocities of two molecules (2 and I respectively) 

after collision (see Figs. 1.2 and 1.3 for a graphic display in the 

case of hard spheres; v I and ~ are the corresponding velocities before 

collision ~ = v~-vl The remaining factors in the integrand account 

for the binary collision cross-section: p is the impact parameter of 

the collision, and ~ the azimuthal angle measured in the plane per- 

pendicular to ~-~I We shall replace here I~I pd~d~ by (~.~d~ 

Equations (2.1) and (2.2) are obtained under some very drastic 

assumptions that just for sake of completeness, I would like to briefly 

state: 

i) Molecules are supposed to be point centres (see Fig. I.I) 

of short range forces, say ~ . The average distance trav- 

elled between collisions is large so that the finite size of 

the molecules can be neglected. 

ii) The dilute gas limit is considered: n-~O,N-~,~--~O, (N2)~, 

but (N~)-~O; N is the total ~umber of molecules and n is 

the average density. 

iii) M~e~/llar correlations are of dynamical origin only. Cor- 

relations of order higher than two-molecule correlations 

are neglected. 

iv) The function f(~,~,t) is a slowly varying function of 

position and time for intervals of order ~'and tcoll (duration 

of a collision) respectively. 

v) Stosszahl-Ansatz: Every time that two molecules meet, 

they come together uncorrelated. After the collision 

they are strongly correlated, however. 

We have already indicated in the preceding section the reason 

invoked by Enskog to discuss high pressure (density) effects for hard- 

spheres only. In this case the collision time is vanishing, and so 

is the probability of multiple (more than binary) collisions. 

In the dense gas case hypothesis (i) must be modified, as the 

ratio of core diameter ~ to the mean free path between collisions 

becomes non-negligible. Because of the finite diameter f the dist- 

ribution function must not be taken at the same space point $ at 

the moment of collision, but at space points which are the distance 

apart. (see Figs. 1.2, 1.3, and 2.1 for a graphic representation). 

Enskog suggested that the molecular chaos assumption (v) has to 

allow for correlations of position at high densities. This is sim- 

ilar to the way in which the geometrical effects are incorporated in 

the van der Waals equation of state (see Fig. 2.1). 
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f 

~,/ 

I \ / 
\ / 

Fig. 2.1 Excluded volume and "shielding" effect of hard-sphere 
molecules. The center of molecule "l" is supposed to 
be lying on the sphere of influence of molecule "2" 

For a hard sphere gas the equation of state reads 

___._ = 4. 4- n IO~l( 'n ) -  
l i N T  M ( 2 . 3 )  

(notice that the compressibility factor l.h.s, of (2.3) is always 

greater than unity and is a function only of the density). Here g(n) 

is the radial distribution function whose known virial expansion is 

- ~. ÷ O . ~ 2 ~ . b  + 0.2E6q C . b ) ~ ' 4  -- 

-I- O. I10 ( ,b, )  ~ ~" O.03dl ('"b) ~ ' r  O C . b )  'i" 

(2 .zl-) 

and 

2 n ~  - ~  ~ = _ . _ - -  
3 

(2.5) 

Indeed one may interpret the term nbg(n) arising from excluded volume 
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as due to the finiteness of ~ (the so called co-volume in van der Waals 

theory). Correlations of the momenta of the colliding molecules are 

still neglected~ 

Enskog also introduced a new physical properties transfer. (see 

Fig. 2.2). 

@ 
I 

Fig. 2.2. Molecule I collides with molecule 2. Although the center 
of 1 does not crossly , momentum and energy are neverthe- 
less transported across this plane. In the Boltzmann 
dilute gas limit,~'--b~, and this effect vanishes. 

In dense gases mot only the translational motion between collisions 

will contribute to the total stress tensor~and energy flux <, but 

momentum and energy is transported also, a distance ~ by an encounter. 

This "collisional" or "potential" transfer may be best understood if 

one considers a plane in space and two molecules on each side but al- 

most in contact with each other. If they collide, momentum and energy 

is transported across the plane even ~ each molecule remains on its own 

side. For instance at the collision, the exchange of momentum --V1-V l~' = 

~2-~ is i~stantaneous from the centre of molecule to that of "I" 

molecule "2", or reciprocally (see Fig. 2.2) 

In the case of hard spheres the direct collision distribution 

function thus becomes 

(2.6) 

where k is a unit vector (the perihelion vector of Fig. 1.2). This 

Enskog notices that "b is thus four times the volume of the 
molecule, per unit mass". And he adds, "It has been impossible to 
date (1922) to calculate g exactly. The theory in this paper is only 
complete when g has been found, but we may arrive at many quantitative 
results without knowing g." 
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vector is in fact the bisector of the V,V ° angle (V'= ~_~a). The 

excluded volume leads to a reduced effective volume allowed to the 

molecules within the container. Thus the collision rate (frequency) 

should be higher because the distance, which two spheres have to travel 

in order to collide, is significantly decreased by the diameter of the 

spheres. At low density however, the diameter ~s small compsred to 

the average distance travelled between collisions and the spheres can 

be considered as point particles (Boltzmann gas). In the Enskog 

approach this geometric factor depends on space only, as a functional 

of the local density. This is given by the radial distribution funct- 

io~ at contact,and as a functional of the density, should be determined 

by the equation of state (section III). 

For the restitutlng collision (see ~ef. 2) one has to replace 

by -V and +(I/2)f~ goes to - (1/2)T~, for the contact point. We 

also note that the differential element of Eq. (2.2) is the same for 

both direct and restituting collisions. However, the integration in 

the former is for V.k >o, whereas in the latter it is for V.k ~ 0. 

The above described assumptions lead to the ad hoc modified Boltz- 

mann equation 

= I 
X 

(2.8) 

This is just ~nskog's kinetic equation for a dense gas of (structureless) 

hard spheres° It is indeed not invariant under time reversal. Also, 

it is evident that in this equation (2.8) we neglect the momentum 

correlations between successive hard-sphere collisions (in particular, 

a sphere is considered as always colliding with other spheres approach- 

ing in a random direction). The g-factor, however, incorporates un- 

systematically some three-body collision effects. Later in section 3 

we shall come back to the explicit expression for g(~) (g(r) at contact). 

The centre of a molecule cannot lie within the 4~f3/3 sphere of 
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influence of another molecule (see Fig. 2.16) Thus, to a first approx- 

imation, the reduction of unit volume is to l-2nb. NOw let 4S be the 

spherical surface associated with molecule "2", lying within the sphere 

of influence of molecule "i" (any other molecule of the gas, except "l") 

Thus, the centre of molecule "l" trying to collide with "2" cannot be 

located on this portion 4S. For a space separation, R(~,R,2f) there 

are n~dR molecules "i"~ Each "i" molecule "removes" a surface 

2nr(~- R/2). On the average the total amount of absolute surface 

which is removed is (the bar means "average") 

~f 

A-"S = I 2n (°'--~)v" qnR=JR "-Hn--'~" ¢ 's ' :3  
r 

(2.9) 

and the relative ,amount of surface removed is 

N 

• = - - 'nh  : --ink 
S t2. r 

(2.1o) 

Thus we end up wi~h a collision frequency factor of 

~'=  { t -  t~ ~l~/ i -2hb) " ~ ' 1  __ { + ~ , ~  = t  ~ ,4-1). ~2~'~b-t-i~('.1o) z. 

('2.1].) 

to be compared with (2.0). 

Clausius and Boltzmann! 

This result was already obtained by 

Notice that the probability of finding two molecules at a certain 
separation (say f) where the gas is not in equilibrium is approxim- 
ated by the same function a_~t equilibrium. 
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Ill. HYDRODYNAMIC EQUATIONS AND THE (NEW ENSKOG) COLLISIONAL (OR 

POTENTIAL) TRANSFER 

The equations of change, or formal hydrodynamic equations, are 

obtained in a similar way to that for the Boltzmann dilute gas case. 

Here, the hard sphere potential plays an essential role. It is only 

with this particular potential function that the energy density can 

be identified with the kinetic energy. There is no potential energy 

contribution, as the hard spheres are inpenetrable. 

Let ~ be (I, ~, v2/2), a collisional invariant. Then integrating 

the Enskog equation, dotted with~, over the velocity space, one gets 

(3.i) 

Notice that in contrast t o  the Boltzmann dilute gas problem, here the 

r.h.s, of equation (3.1) is non vanishing. However, if we assume 

that inhomogeneities are weak enough, we may approximate this r.h.s. 

by its Taylor expansion up to first few terms. Thus, one writes 

G 

i=! 
(3.2) 

The six terms here retained are enough t o  get the linear transport 

coefficient of the Enskog hard sphere gas, as these quantities show 

up at the V 2 order. 

The quantities I[ 

14 --" ~(q-)Id~''~ 

introduced in Eq. (3.2) are.." 

[d T TI = 0 
J 

(3.3) 
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(3 .z~) 

(3.5) 

(3.6) 

~-~_= ~,,[d~, ~.~1~ t~.$ ~l[~. 
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=_ T, -o 

(3.8) 

Here the J-quantities are defined, and with expressions given 

(3.3) through (3.8), we can write the general conservation equation 

(3.1) in the following formal way 

I k 

(3.9) 

Here we have introduced a kinetic contribution to the ~- current 

(3.1o) 

and a potential part 

(3.11) 

Now, letting ~ be successively I, ~ and v2/2, we easily get the 

continuity equation, the Navier-Stokes equation and the energy equ- 

ation in much the same ~anner as in the theory of dilute gases. The 

only difference in p~-sctice arises because of the definition of the 
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fluxes. With the Enskog equatien, and acoerding to the general cons- 

ervation law (3.9), we get two contributions for 1~e pressure tensor 

and for the macroscopic heat current 

(3.12) 

(3.13) 

with the following identifications being made 

(3.14) 

,,~ Id~,,~(~l[l, f]~,~ - ~  ~ 

4- 

(3.15) 

(3.16) 



(3.L7) 

Here is the "peculiar" velocity ~ : ~ - ~, and~ is the 

macroscopic (barycentric) velocity as usually defined for dilute 

gases (see ref. I or 2). 

The identification of the linear transport coefficients comes 

through use of the standard linear phenomenological laws. Thus, 

one has 

0 

(3.18) 

(3.19) 

In equation (3.18) we have introduced the symmetrized traceless tensor 

o 

9F a 

(3.2o) 

Here p is the static pressure; ~ , ~ and ~ are respectively shear, 

viscosity, bulk viscosity and heat conductivity. To obtain explicit 

expressions for these transport properties, one is faced with the 

integration of Enskog equation. This can be done by a Chapman-Enskog 

procedure in a similar manner to that for the Boltzmann equation for 

dilute gases. We shall come back to this in the next section. 
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IV. SOLUTION OF THE ENSKOG EQUATION FOR PRACTICAL PURPOSES 

We are, in fact, interested here, as with the Boltzmann dilute 

gas problem in solving the Enskog equation in some asymptotic sense. 

One such way ~s the Chapman-Enskog procedure. As one is only inter- 

ested in linear transport coefficients, and thus, in weak inhomogen- 

eities only, one starts expanding the r.h.s, of the Enskog equation 

in powers of a smallness parameter ~. Later on we will set ~ = 1. 

One has 

(~.i) 

Notice that here none of Ji (i = ~,5,6) have appeared, as they are 

already linear in ~ . Also, the J1 operator is the linear Boltzmann 

operator up to a multiplicative constant. We shall also expand the 

distribution function 

) 1 - 0  
( 4 . 2 )  

At the ~o order, one gets the local maxwellian 

 c.i 
= [.znkT(F,.~)]31z gxp ZkT(F,'~) (~.3) 

together with the identification of density n, macroscopic velocity 

~, and local temperature fields T, 
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n 

nvl 

n ~ k T .  z ¥ 

rl 

i 
This leads to the standard subsidiary conditions 

(¢.a) 

(.) 

(¢.5) 

Now the ~radients expansion of the 1.h.s. of Enskog equation 

gives, at ~(o) -order, 

9F 
- 

_ . lO~ 

(L~.6) 

Here, for simplicity, we have introduced the differential element 

(4.7) 

One ought to identify (~ f)~oj , and this is done through the ex- 

pansion 
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91:I = m=o ,(=I ~ ~,,< 9 

(+.8) 

where ~4 : n;T2,~,~ ~" ~ j "l".r - T .  

Like in the Boltzmann dilute gas case, the time evolution of 

the macroscopic quantities is obtained through the standard hydro- 

dynamic equations. The continuity equation gives 

the momentum balance gives 

(~.9) 

+-+) 14 __E. gE_ -_~ _.9 ~'~ 

- +F .~F ; 
(+.I0) 

and the energy balance 

gT) ~°) - 9 z - -  u . - - T - - - -  
- eF 3~k 

(+.li) 

Up to zeroth order in the gradients, we obtain from the identifications 

made in section 3, 

,~ +oj 2+j = a k T  ~"LJ 
(+.12) 
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f,~t.; -'-~ ~" I I ~'~;' ̀~" (~' ~) ['~', - ~,] ~i 
- vf'-}o ~ kT ~';j 

" (~.13) 

Combining now (4.12) and (4.13) we get for the total pressure tensor 

l,) 

(~.I~) 

Equation (4.14 allows us to identify the factor g(r) w~th the expres- 

sion given by the virial equation of state given in section e.q. (2.3) 

We still must evaluate the J2 and J3 terms. After some lengthy 

calculations, not reproduced here, one gets 

g'kT ~' 

(4.15) 

and 

9r (4.16) 

Collecting the results obtained above, one gets the fol]owing 

linear integral equation for ~(I) 
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9 O, 

+I t~  "~ ZkT - ~ T" 9rt" 

Notice the striking similarity of this equation to the linearized 

Boltzmann equation. Indeed Eq. (4.17) reduces to the latter if one 

sets g = l, and b = 0. 

The remarkabIe feature of this equation is that if we already know 

the tensors ~ and B~which solve the Boltzmann equation, under the 

form 

n .  e, of.÷z,.a.. A 
(4.18) 

we automatically know the solution of Eq. 

be written as 

rl ~(.I] 

(4. 7). This solution can 

(4.19) 

Thus, the linear integral equation problem associated with the Enskog 

equation reduces to that of the Iinearized Boltzmann integral equation. 

One should also notice that the Enskog theory merely scales in time 

the solution of the Boltzmann equation. This is so because Enskog's 

theory amounts to assuming that a high density hard-sphere system 

behaves exactly like a dilute gas except that everything happens 

faster because of the higher rate of collision. 
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V. TRANSPORT COEFFICIENTS FROM ENSKOG EQUATION 

In this section we shall give explicit expressions for the 

transport coefficients phenomenologically introduced in section 5. 

It suffices to~plicitly eva2uate the macroscopic fluxes up first 

order in the gradients. One may expect three different types of 

contribution~ 

(i) a standard kinetic part (already the one and only one 

given by the Boltzmann equation) 

(ii) a potential part due to the (new Enskog) collisional 

transfer, and arising from f(1) 

(iii) a potential part arising from f(o) and due to first 

order macroscopic-gradient terms in the hydrodynamic 

equations. 

After some lengthy, but rather elementary manipulations (see, 

for instance, the book of Chapman and Cowling), one gets the pressure 

tensor: 

q =n 

• . 4 z 

g 
O 

k~r hj 
(5.1) 

and the heat current 

~c0  I n (~+ 3_ I 
"3 k ~" ~" ~ ( k T ~  ~" 9__ T 

(5.2) 

eThe Enskog theory for a (dense) fluid of hard discs has been developed 
by D.M. Gass, J. Chem. Phys. 5~ (1971) 1898. We will not consider this 
two dimensional problem here. 
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Now, the dilute gas transport eoefficents can be i~entified. 

Indeed they are obtained by setting b = O. Thus, we get (a super- 

script B means the Boltzmann dilute gas limit): 

Ic i 

and 

(5.4) 

They are well known definitions for dilute gases. From equations 

(5-3) and (5.4) we get B and ~B respectively, but this is already 

known. 
Now, incorporating f and ~B and also taking (g.14)[P(°~po ~ 

(this equation is the exact equation of state for a hard-sphere gas) 

and 

~I~ ~ (5.6) 

we have the complete Enskog pressure tensor again 

0 

-I 
(5.7) 

and the Ensko~ heat flux 
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(5.s) 

Notice that Eq. (5.5) is the exact equation of state for a 

hard - sphe re  gas .  Approximate va lues  of ~B and ~B are  known. 
a r e  

]~,_ ~" CkT) '~, 
I/~ o "2" r1117- 

They 

(5.9) 

and 

(5.1o) 

The Enskog transport coefficients are now obtained by identif- 

ication of (5.7) and (5.8) with the phenomenological laws (5.18) and 

(3.19) respectively. One obtains 

g ? ,  , 3 ~  
(5.n) 

(5.12) 

and 

(5.~3) 

We notice that the bulk viscosity ~, given by (5.12) exists and 
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not vanishing, in contrast to the Boltzmann dilute gas case, where it 

does not appear. 

Enskog transport coefficients are usually discussed in terms of 

reduced quantities, i.e. ~/ qB ~/~B and ~/~ . For hard spheres these 

ratios are temperature independent functions of rib. Also, an important 

feature of Enskog transport coefficients appears if a suitable new 

quantity is introduced. One introduces the new quantity 

In terms of this new quantity, one has the following reduced Enskog 

transport coefficients~ 

/'z [ '- ÷ o ,  
= J (5.15) 

(5.16) 

A correction factor of the form (5.17) was already proposed on 

s e m i - e m p i r i c a l  g r o u n d s  by  G. ~ a g e r  i n  1900! I n  t h e s e  e x p r e s s i o n s  t h e  

first term is purely kinetic. The last one is the contribution from 

the potential part alone. The middle term represents the cross 

contribution from the kinetic and potential parts of the corresponding 

fluxes in the correlation-function approach. 

Equations (5o15) to (5.17) graphically displayed in Fig. (5.1) 

deserve some comments and physical interpretation. Consider, for in - 

stance, the heat conductivity (5.17). 

~Though we do not want to discuss fluid mixtures here, just for the 
sake of completeness we recall that in the Enskog theory the self 
diffusion coefficient is given in terms of the time scaled Boltzmann 
dilute gas coefficient D=DB/g with DB=-~ (~)I/2 

8 n f  % 
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q.o 

2.0 

'1.o 

A 

~C 

~o I~ 3,0 4,o S.o ,~ 

Fig. 5.1. The transport coefficients of a gas composed of hard 
spheres according to the theory of Enskog. A: reduced 
heat conductivity (eq. 5.17); B: reduced shear viscosity 
(eq. 5.15); C: reduced bulk viscosit~ (eq. 5.16) (All 
reduced quantities divided through nb). 

The three contributions to (5.17) can be recast in a two-term 

decomposition, 

(5.18) 

~,/ ,~e,  =__ I 
-- 4.. "~ , (5.19) 

zs-. (~. oz~" r~) r/ 
(5.2o) 

Equation (5.19) shows that the (standard) translatory transport account- 
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ted for by the ~- coefficient decreases monotonically with increasing 

compression (density) at constant temperature as wou~d be expected. 

The cellisiona] contribution, given by (5.20) however increases linearly 

with increasing compression, becoming the dominant part in the high 

density fluid. Both terms are plotted in Fig. 5.2. together with the 

sum as given by equation (5.17). 

Fig. 5.2 

q 

2 

3 

U 

Translator~l, collisional 2, and total 3, heat conduct- 
ivity contributions for an Enskog fluid of hard spheres. 

Another remarkable feature of the reduced Enskog transport coef- 

ficients is that both the shear viscosity and the heat conductivity 

show a relevant minimum value as function of y, whereas the bulk 

viscosity does not. Dbviously this latter quantity vanishes as y 

goes to zero. The respective minima correspond to the following values 

= z. ,t = 
(5.21) 

~i~ (5.22) 

This qualit&tive behaviour shown by Enskog transport coefficients fits 

nicely with the experimental data as we will see in the next section. 
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VI COMPARISON WITH EXPERIMENTAL DATA 

This section stems from fruitful discussions with Dr. K. Lucas, 

during the School, and in fact it has been written in collaboration 

with him. 

Although the molecules of a real (simple monatomic) gas cannot 

be considered as hard spheres, Enskog's theory has been widely used 

to interpret experimental data of transport coefficients. The main 

reason is the lack of similarly simple expressions for the density dep- 

endence of the transport properties for more realistic models. 

Let us first discuss an important qualitative feature of Enskog 

transport coefficients already pointed out in the preceding section. 

We have indicated that ~o of Enskog's hard-sphere transport quantities 

show a minimum value as functions of y, i.e., as functions of density. 

Is it not remarkable that experimental heat conductivity data show 

beautifully such a minimum (even for a polyatomic gas) ? Figure 6.1 

illustrates this minimum for the heat conductivity of nitrogen. This 

result dates from 1955. 

27.Z0 

"g  

0 I~O 

i ~ i 

I I I 
20O ,400 600 

Fig. 6.1 Heat conductivity of nitrogen as a function of the 
density illustrating the existence of the Enskog min- 
imum. Taken from MeLaughlin (1965), where the original 
reference can be found. 

For a quantitative comparison of the theory with experimental data, 

a direct procedure is to compare the density dependence of the experi- 

mental transport coefficents of a real gas with that of a hard-sphere 

gas with the same Holtzmann dilute fluid va~es for ~B and ~B This 

is achieved by calculating with equation (5.9) an effective diameter, 



317 

, and thus an effective value of b. The ~ comes from the known 

equation of state. Using this method the viscosity and heat conduct- 

ivity of noble gases are compared with the predictions of Enskog 

theory. (see figures 6.2 and 6.5). 

2.0 

W 
1.5 

LO 

= FEILIUM -'50- c . . . . .  / 
• NEON +50°C / /  
• NEON -5OeC / " 
o ARGON +75°C / o 
• ARGON --50"C / . = ~ 
a KRYPTON + 50=C / = o , 

- • XENON +75"C / - : .  ,o 
- -  THEORY OF ENSKOG / A o- - 

• A • . 

I t t I T I I 1 
0 0.2 0.4 0.6 0.8 

~n =1= L 21T n°'33 

Fig. 6.2 Experimental shear viscosities of helium, neon, argon, 
krypton and xenon compared with the theory of Enskog. 
Taken from Sengers (1968) where the original r6ferences 
may be found. The transition for a hard-sphere fluid 
is bn--"l.8. 

A ARC4~ - 90~ 
2D - -  11~0RY OF ENSKOG 

1.5 A ~  

a o o o 

LO 

, f  I 1 I 
O O2 0.4 3 ¢ O.6 O J3 

Fig. 6.3 Experimental heat conductivities of neon and argon compared 
with the theory of Enskog. Taken from Sengers (1968) where 
the original references may be fomn~. 

It is seen that the data follow the predicted behav~ur up to a density 

of bn=0.4. This figure corresponds for helium to a density of about 650 

Amagat units,for neon to about 4oo, for argon to about 160 and for xenon 

to 65. These are considered as moderate densities. 

At higher densities, however, the theoretically expected increase is 
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too large. Usually the experimental data are not compared with the 

theory of Enskog by the method just described and for this very reason 

we turn our attention to another procedure~ 

The situation can be considerably improved in the following way. 

As relations (5.15) and (5.17) express the transport ratios in terms 

of equilibrium properties, attempts have been made to represent the 

transport coefficients of a real gas by the Enskog formulas using for 

both b and g effective values deduced from the compressibility iso- 

therms of the real gas. One possiblity would be to derive bng from 

the experimental compressibility factor (Po/nkT), using (5.5). 

Since it happens that, for a hard-sphere gas, the external pros- 
,, ,, ~Po ~ 

sure Pc and the thermal pressure T(-E~ ) are equal , another pos- 

sibility for extending the applicability of the theory of Enskog to 

a real gas is to deduce explicit values of bng from the experimental 

thermal pressure, using the relation 

(6.1) 

with 

(6.2) 

This suggestion, in fact, goes back to Enskog himself. Notice 

that taking (6.3) as valid for real molecules, is meant to be just an 

ad hoc assumption made only in order to see what comes out of the 

The values (I/n)=O.5~b (=1.59~=1.12~3; v ° =~/~ is the volume 
per sphere in a regular close-packed array of N spheres) and (p/nkT) 
= IO.5 give respectively the minimum volume and the maximum ratio of 
(p/T) at which the fluid phase is stable. One ama~at ~s the density 
of the substance at 0 C and 1 arm. Thus the denslty expressed In 
Amagat units is a dimensionless quantity that represents the ratio 
between the actual density and the density of the gas at OuC and I 
arm._ For instance, for neon 400 Amagat u~its correspond to 0.35992 
g/cm ~ (One Amagat is around 0.0008998 g/cm>), 

Im In standard textbooks on equilibrium thermodynamics, one finds that 
the external pressure Po can be written as Po=T(~P/~T)v - (~U/~V)T 

where T(gp/gT) T is called the thermal pressure and (gU/~V) m the inter- 
nal pressure. The internal pressure represents the force~of cohesion 
of the molecules. For a gas of hard spheres ~ U/PV)T = 0 and the 
external pressure is equal to the thermal pressure. 
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comparison of this adaptation of Enskog's theory with the experimental 

data. In addition to nb~, an effective value of b (the "co-volume") 

is needed, also. This latter parameter can be given explicit values 

by just looking at the limit of g as n vanishes, and the ratios (~/1~) 
and (~/~B) reduce to one. If the experimental (Po,n) relation is 

expressed in the virial form 

(Po/ .k T )  = t. -,-. (T] + 
(6.3) 

b is related to the second virial coefficient, B, through its temper- 

ature derivative. 

a(TS)  

dT (6.4) 

This empirical ad hoc adaptation or modification of the Enskog 

thoery obtained by substituting (6.3) into (5.15) and (5.17) and thus 

relating the (~/~)-- and (~/~B) ratios to the experimental p-V-T data, 

has been used by many authors. Typical results that are obtained for 

the transport coefficients of the noble gases are shown in figures 

6.4 and 6.5 and Table Io The dotted curves represent the behaviour 

predicted by this procedure. In the density range shown, the differ- 

ence between calculated and experimental data never exceeds 15%. We 

thus see that the theory of Enskog describes the maiu trend of the 

density dependence fairly well over a large density range to within 

about lO~,up to densities of 600-700 Amagat. The most complete 

comparison of this empirical modification of Enskog theory and ex- 

perimental data can be found in a rent paper by Hanley, McCarty and 

Cohen (1972). 
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Fig. 6.4 Experimental shear viscosities of helium, neon, argon, 
krypton and xenon compared with the empirical ad hoc 
modification of the theory of Enskog. Taken from 
Sengers (1965, 1968), where the original references 
can be found. 

TABLE I 

~calc -~exp (%) 
qexp 

(amagat) I00 200 300 400 500 600 700 

Helium O°C 0% 0% ,1% -2% -4% 
Neon +75~C +1% +1% ~1% +1% +1% +1% 
Neon +25~C +1% +1% +1% +1% +1% +2% 
Argon +75oC 0% -3% -5% -8% -I0% -12% 
Argon -50~C +5% +5% 0% 
Xenon +75vC +14% +10% 0% -7% 

+1% 
+2% 

~calc-~exptl (%) 

~exptl 

~(amagat) I00 200 300 400 500 600 ?oo 

Neon +75~C 0% 0% 0% -1% -2% -2% 
Neon +25:0 0% -1% -2% -2% -3% -4% 
Argon +75~C -3% -7% -II% -12% -13% -15% 
Argon -90vC +1% -4% -8% -6% - 4% 

-2% 
-4% 

Comparison of the shear viscosity and the heat conductivity of the 
Noble Gases with the empirical modification ef Enskog's theory. Taken 
from Sengers (1965) where the original references can be found. 
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Fig. 6.5. Experimental heat conduetivities of neon 
and argon compared with the empirical ad 
hoc modification of the theory of Enskog. 
Taken from Sengers (1965, 1968) where the 
original references can be found. 
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However, while being a practically useful recipe for predicting trans- 

port properties over a wide range of thermodynamic states, the procedures 

cited above should not be regarded as rigorous tests of the theory, or 

of Enskog's kinetic equation, or of the hard-sphere model, which has 

been put into it. One should not conclude on this basis of acceptable 

agreement with experiment, that Enskog's equation and the hard-sphere 

model represent the actual fluid behaviour correctly in the region 

studied. 

A more rigorous test of the hard-sphere model has been given in a 

sequence of papers by Dymond, and Alder and Dymond, on the basis of the 

blew, that for transport properties, the hard-sphere model is equiv- 

alent to the van der Waals model of a fluid. According to this model, 

the molecules have a potential made up of a hard core plus a weak un- 

iform negative part as shown in figure 6.6. 

Y 

Fig. 6.6 The potential function of a van der Waals fluid 

This model is highly idealised. However, as far as the attractive 

part goes, real system approximate this picture at densities higher 

than critical, wh~re the range of the intermolecular forces can be con- 

sidered large relative to the intermolecular spacing, the net resulting 

attractive force on a molecule between its nearest neighbours being 

close to zero. If furthermore, the temperature of the fluid is suf- 

ficiently high (T~Tc, Tc: critical temperature), so that the kinetic 

energy of molecules is large compared to the potential energy, the 

true molecular motion will approximate a succession of linear trajectories 

and hard core collisions. As far as the repulsive part of the potential 

goes, it is steep for real molecules, but not infinitely steep. Within 

the van der Waals model, this can be accounted for by a temperature 
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dependent hard-sphere diameter, decreasing with increasing temperature. 

We can therefore expect real fluids to follow the van der Waals model 

at densities and temperatures above the critical values with a core 

site decreasing with increasing temperature. 

It is known, that the p-V-T data of real fluids can be represented 

by a van der Waals type of equation of state at densities and temper- 

atures above the critical values. In support of this molecular dynamics 

calculations for square-well molecules show that a plot of (pVo/NkT) 

versus (l/T) is straight for high densities and high temperatures, in 

agreement with the van der Waals equation, down to approximately the 

critical temperature. The equation can be written in the form 

n k T  ~T H.~;. ~ k T V  
(6.5) 

The first term of the r.h.s, accounts for the hard-sphere contrib- 

ution for whiah an accurate equation is available, in terms of the 

hard-sphere diameter (see the paper by Carnahan and Starling (1969). 

At lower temperatures, deviations from this linear representation, 

and therefore deviations from the van der Waals equation becomes app- 

arent. 

When experimental data for (p/nKT) are plotted versus (l/T) for den- 

sity and temperatures above the critical, one gets, however, nonlinear 

representations up to the highest experimental temperatures. This be- 

haviour is shown in figure 6.7. 

P 
~kT 

f3 > 

m/r 

Fig. 6.7 i Experimental p-v-T data as a function of 
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This curvature is interpreted in terms of a temperature dependent hard- 

sphere diameter ~. At every desired temperature, the tangent is drawn 

The intercepts of these (high temperatures) slopes with the (P/nKT) axi~ 

give "experimentsl" hard-sphere values, indeed functions of both temp- 

erature and density. These values, when interpreted in terms of the 

Carnahan-Sterling equation of state, lead to temperature-dependent 

hard-sphere diameters, ~. For densities and temperatures above crit- 

ical it just happens that ~ does not show any density dependence. This 

provides further evidence of the usefulness and validity of the van 

der Waals model in that region. A qualitative display of the temp- 

erature dependence of ~ is given in fig. 68. 

Fig. 6.8 

T 

A qualitative sketch of the dependence of fon T 

Thus, using the values of ~ obtained from experimental p-V-T data, 

and the Carnahan-Sterling equation of state, the Enskog gas transport 

properties can be evaluated, and directly compared to experimental 

results. In doing this, one must realise however that at high den- 

sities, Enskog theory does not strictly apply. This is because of 

the systematic neglect of momentum correlations of the hard-spheres, 

in the Enskog molecular chaos assumption. Dymond and Alder (1966) 

have shown that the viscosity and heat conductivity of some noble 

gases can be predicted within 10% for densities and temperatures 

above the critical values, by means of Enskog's equations. The results 

are very satisfactory for ar~onlkrypton and xenon, and less sat- 

isfactory for neon, where experimental values are only available at 

high temperatures, well above critical. The temperature dependence 

is also quite well reproduced. This is to be expected, as a con- 

sistent temperature dependent diameter • has been used. Such a rep- 

resentation is graphically depicted in figure 6.9. 
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Fig. 6.9 Heat conductivity (in units of 10 -3 W) of argon at four 

isotherms: .(2.7305 Tc)~ @(1.975 Tc~,~k~(2.305 To); 
~(1.809 Tc)~ Points are calculated values using Enskog 
theory. The solid curves are experimental curves of Michels 
and Le Nendre. Notice that the~wo upper curves belong to 
the 1.h. ordinaDe axis, whereas the two lower curves belong 
to the r.h. axis. Taken from unpublished results of K.Lucas 

In another paper, Dymond and Alder (1968) have verified for the 

self diffusion coefficient, that computer calculated corrections to 

the Enskog predictions, by removing the molecular chaos assumption, 

given agreement between calculated and experimental results, within 
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the accuracy of the experimental and machine generated data. This 

gives further evidence of the validity of the van der Waals model 

for transport properties at high densities and temperatures~ 

Yet another method of testing the hard-sphere model has been given 

recently by Dymond (1973, 1974). P-V-T data are no longer used to 

determine the hard-sphere diameter. As a matter of fact, according 

to Dymond~s suggestions, in order to test the models, there is no 

need of knowing the diameter, r , in advance. Corrections for 

correlated molecular motions, due to molecular dynamics computations 

by Alder and Wainwright, are used together with Enskog's transport 

properties. The hard-sphere results~ e, g., for viscosity, are rep- 

resented in the form 

V 1 z/3 

(6.6) 

Here ~E denotes the standard Enskog transport coefficient and -~-(~/~) 

the computer empirical correction for corre&ated m~lecular motions. 

values of ~* can also be plotted from experimental viscosity The 

data as a function of v without any prior knowledge of the hard- 

sphere diameter, ~ . Where both curves are superimposable, the 

hard-sphere theory does represent the density dependence of the data. 

~- or Vo, can be determined from points where the two curves coin- 

cEde. Dymond then shows, that coincidence between the two curves 

is reached within the limits of the accuracy of the experimental data 

and the hard-sphere corrections for densities, from above twice the 

critical density down to about 1.2 times the critical density. The 

agreement, for heat conductivity and selfdiffusion, is similar or 

even better. Since ~ has been determined from high-density viscosity 

Extension of this procedure to polyatomic fluids, even with 
approximately spherical molecules, do not provide results of 
comparable quality. Viscosity deviations are of order of 15% even 
at high densities, whereas such deviations in the noble gas cases 
are within 1 to 3%. For heat conductivity the situation is even 
worse because of the neglect of the influence of the internal degrees 
of freedom (K. Lucas and G. Ackman; unpublished results). 
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data no further adjustable parameter is available, and thus true 

priori predictions are being made. It is remarkable that the density 

region considered corresponds to a large band of thermodynamic states, 

where the transport properties change value by a factor of more than 

3. Such agreement is not reached in any of the known empirical mod- 

ifications of the Enskog theory on the dense region (see for instance 

figures 6.2 through 6.5). 

Applying now the re~dpe to liquid transport properties data (for 

T(Tc and density above critical), one finds that the hard-sphere 

diameter has to be pressure-dependent as well as slightly temperature- 

dependent. Here again, once f has been fixed at some given thermo- 

dynamic state of a substance from data of one property, the other 

transport properties are predicted without any further empirical 

information. One cannot, however, expect the hard-sphere model to 

be valid at low fluid temperatures, as there the actual non-uniformity 

of the attractive potential becomes important. 

The procedure has also been applied to polyatomic gases by Lucas 

and Ackmann (unpublished results). They have verified that for a 

number of quasi-spherical molecules, the viscosity could be represented 

in terms of the corrected Enskog theory almost as well as for the 

monatomic simple fluids. This may be useful for practical applications, 

though admittedly one parameter, the hard-sphere diameter, q" , has to 

be adjusted to a high-density viscosity data point. One should, how- 

ever, not consider this as evidence of a deep understanding of the 

behaviour of polyatomics in molecular collisions but merely accept it 

as a convenient empirical fact analogous to the situation wi~h dilute 

polyatomic viscosity, according to the Chapman Enskog theory. No such 

good results can be found for the heat conductivity, as it is to be 

expected. 

VII. THE SQUARF~WELL FLUID 

There is one more inter~o&ecular potential that I will mention: the 

square-well function. The nice feature of the square-well potential 

(see Fig. I.I) is that it retains the impulsive property of the forces. 

The Enskog theory of square-well molecules has been developed by several 

authors. However, contrary to the situation with the hard-sphere gas, 

neither a computer calculation for square well fluids nor a time-cot- 

elation function approach seems to have been worked out. Also it should 

be stressed that what people have done in developing Enskog theory 
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for a square-well gas involves some additional adhoc approximations 

that are not present in the hard-sphere gas case. An equation similar 

to the hard-sphere Enskog equation is thus given, though the r.h.s. 

is somewhat arbitrarily analysed, different parts arising from the 

possible distinct types of binary collisions between square-well 

molecules. The types of collisions or "partial collisions" may be 

summarised as follows: There will be an impulsive force at a sep- 

aration r = R~ due to the outer edge of the well; the molecules may 

subsequently experience a hard-core collision at r =~ , followed by 

a further partial collision at r = Rr , when they separate. In writing 

the square-well two-body collision integral, all types of "partial 

collisions" give separate contributions. The molecular chaos assumption 

is applied to each "partial collision" independently. This is an 

additional assumption on ~ top of the standard Enskog theory and should 

be valid, approximately, only for dense enough systems (see Davis, 1973) 

Without going into any detailed description of the formal theory, 

we merely list here the relevant results given in the literature for 

a square-well model gas. The improvement proposed for the equation 

of state is: 

,~NT (7.1) 

The transport coefficients are also improved in the following way: 

For the shear viscosity one has 

2~'n 

(?.2) 
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The bulk viscosity is given by 

(7.3) 

The heat conductivity 

I 
3Z 

z~-n (7.a) 

Here g(~) is evaluated just inside the well at r =~+, whereas g(R~) 

is evaluated just outside the well. We have introduced 

~/~T 

(7.5) 

0 
(7.6) 

The functions ~ and ~ exist tabulated in the literature. 

According to David (1973) and Gubbins (1973), the Enskog square-well 

theory would interpret experimental data for fluids for densities above 

critical, rather than standard " moderately dense" gas-like data, much 

better than the simple hard-sphere gas theory. In particular the temp- 

erature dependence of transport coefficients seems to go better with 
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physical reality. 

VIII. FINAL COMMENTS 

Even though we have found that Enskog's equation is certainly very 

useful in interpreting experimental data on transport properties of 

dense simple gases there are still fundamental questions to answer: 

what is, from first principles and from "exact" calculations, the 

domain of ~alidity of Enskog's equation? Can we derive it from the 

Liouville equation, as it has been done for the Boltzman's equation? 

Does Enskog's equation provide some further understanding of the 

general irreversible behaviour of a non-equilibrium gas (and isolated 

system)? Is it really valid for a hydrodynamic descriptionldense gases? 

Nobdoy has been able as yet to produce a~ H-theorem for the Enskog 

equation. The difficult lies in the definition of the non-equilibrium 

entropy functional for the Enskog hard-sphere gas. It is only very 

recently that D. Hubert (unpublished results) has been able to provide 

an H-theorem for an Enskog-like type of equation. He uses ideas of 

Prigogine which have been presented at this School (see the lectures 

given by Prigogine). However, it has been shown by Lebowitz et al 

(1969) and by some other people (see e.g. Van Beijeren and Ernst (1973), 

Mo and Dufty (1974) that the actual Enskog equation is a short-time 

kinetic equation (valid at t = 0 + only). If this result is taken 

strictly then we are faced with the problem that Enskog's equation, 

valid for times shorter than the mean free time between zollisions, 

cannot be considered seriously as a kinetic equation for the hydro- 

dynamic regime. We are just saying that there is no convincing 

argument Why the Enskog equation should be a good approximation for 

the description of a gas on the time scale on which one can describe 

the nonequilibrium fluid in terms of hydrodynamic equations with simple 

transport coefficients. There remains an open line of research which, 

as a matter of fact, P. Resibois and J. Lebowitz are presently exploring. 

J. Lebowitz has discussed this problem in one of his lectures. 

One would like to define the Enskog equation in terms of some 

scheme that can be used to predict the (exact) high density corrections 

to Enskog, which are known from molecular dynamics or from general 

theories. With respect to computer analysis of hard-sphere systems, 

there is the beautiful work of Alder et al (1970). This work is a 

direct and unambiguous"experimental" test of the validity of the 

Enskog approach~ Some of the results are shown in figures 8.1 and 

8.2. The major assumption tested in the comparison is the molecular 
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chaos approximation. The errors appear to be fairly small for the 

heat conductivity whereas for the shear viscosity~ the error is within 

20%, for n~,O.8. 

t ,5  
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Fig. 8.1. 

Fig. 8.2. 

Ratio of exact hard-sphere molecular dynamics shear 
viscosity to Enskog hard-sphere visoosity (a computer 
experiment done with 108 molecules). Taken from Alder 
et al (1970) where detailed quantitative data can be 
fou-~. See also Gubbins (1973) paper. 
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Ratio of exact hard-sphere molecular dynamics viscosity 
to Enskog hard-sphre viscosity (computer experiment done 
with 108 molecules). Taken from Alder et al (1970), 
where detailed quantitative data can be ~o-~. See also 
Gubbins- (1973) paper. 
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Concerning the more basic point of view of the general theories, 

we know that Enskog,s equation may be derived in a variety of ways from 

the BBGKY hierarchy, under some well defined ad hoc assumptions. 

I do not want to engage here in a critical review of different formal 

"derivations" of Enskog's equation. However without aiming at being 

complete I'll merely list here a few of the papers that could be of 

interest: Pioneering efforts seem to be those of H.S. Green (Molecular 

Theor~ ~f Fluids, 1952; there exists a Dover reprint). R.F. Snider 

and C.F. Curtiss, Phys. Fluids ~ (1958) 122; ~ (1960) 903; J.V. Sengers 

and E.G.D. Cohen, Physica 27 (1961) 230. More recent papers include 

those of M.H. Ernst, Physica 32 (1966) 273; N.D. Henline and D.W. 

Condiff 3 J. Chem. Phys. 54 (1971) 5346; D.K. Hoffman and H.S. Green, 

J. Chem. Phys. $3 (1965) 4007; D.K. Hoffman and C.F. Curtiss, Phys. 

Fluids ~ (1965) 667. An Enskog theory for soft potentials has been 

recently worked out by G.B. Brinser and D.W. Condiff, J. Chem. Phys. 

59 (1973) 6599. 

Sengers has discussed at length the three-particle collision term 

in the generalized Boltzmann equation and has identified Enskog's app- 

roximation~ Sengers (1973). 

The discussion becomes easier if we consider a spatially homogeneous 

system. Retaining only the first few terms, the generalised Boltzmann 

equation has the form (Choh and Uhlenbeck), 

Here J, K, are time-independent integral operators acting on the 

distribution function f. The operator J is Boltzmann's collision 

integral and K accounts for the effect of collisions that involve 

three molecules According to Enskog one can estimate, in a first 

approximation, ~e non-equilibrium correlations in configuration space 

by assuming that they are independent of the velocities and that they 

are the same as for a dense gas in equilibrium. This means that 

g(~) according to Enskog, gives the probability of finding two modules 

in contact (W12 =~) even in the presence of gradients. This leads 

automatically to a replacement of the Boltzmann J operator by the 

approximation 
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The radial distribution function, g(F), has a virial representation 

given by equation (2.4) or else (2.11). If we substitute this virial 

series into (8.2), we obtain an expansion for the collision term, which 

can be compared with the formal expansion (8.1) for the generalised 

Boltzmannequation. We conclude that the Enskog theory theory approx- 

imates the three-molecule collision term K(fff) by 

K'G~:(} = L, ,bT(~}= ~" ,,,~., :r(Yf). 
(8.3) 

One finds that for a spatially homogeneous gas the Enskog transport 

coefficients are given in terms of simply scaled Boltzmann values 

Use of the virial representation of g(~), leads to the Enskog theory 

estimates of the three-molecule contributions to the transport prop- 

erties 

r~" :- ~ n ~.'s~s :- ~'s" b ~, e, , 
(8.5) 

(8.6) 

Sengers has identified these density corrections (or else (8.3)) in 

the full three-molecule collision problem, as the contribution of 

double-o~rlapDin~ collisions i.e. ~wo-body collisions wh~re both 

colliding molecules are overlappin~ with a third molecule. The re- 

maining contributions have also been discussed by Sengers. 

Sengers has even compared the results given by the non-uniform 

Choh-Uhlenbeck equation and the density expansion of Enskog's prop- 

erties (as given by equations (5.15) and (5.17)) and has found that 

the full three-molecule density corrections should be 

? - ,- o . o o , )  -,- o . , o o ]  
j (8.7) 
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= [ ( -  o.r'Iz *_ o.o,,) i .zoo] 

Whereas the density expansion of Enskog's theory gives 

(2.~)) 

(8.8) 

(using equation 

;IG'= [ -  o.62,1-- l.zoo'] 8 
(8.1o) 

Thus a fairly good agreement between Enskog predictions and more 

accurate results shows up. This adds one more surprising result. 

A final question that I would like to comment on is a natural 

modification of Enskog's equation suggested recently by Van Beijeren 

and Ernst (1975,1974). 

It is clear that the statistical factor introduced by Enskog is 

not exactly the local-equilibrium radial distribution function (des- 

cribing the non-uniform state, the local equilibrium distribution 

function may be expected to involve gradients of the local density 

and higher powers of bhese gradients, as well as space derivatives 

of higher order than the first. In fact, the explicit form of the 

pair distribution functien in a local-equilibrium state is well known. 

For hard spheres, it can be expressed as a nonlocal functional of the 

local density, which may be expanded around some fixed point; thus 

yielding explicitely all space derivatives mentioned above. 

Recently Van Beijeren and Ernst have proposed to replace the function 

g in Eq. (2.8) by the exact local equilibrium distribution function 

E(~],~p), which takes into account the spatial nonuniformities in the 

local equilibrium state. This replacement is cOmpletely in accordance 

with Enskog's arguments for modifying Boltzmann's "stosszahlansatz". 

The local-equilibrium pair distribution function in a non-uniform 

state for a gas of identical hard spheres is a functional of the local 

number density n(~,t), and can be expressed in the form of a density 

expansion. We will not give here any details but will just comment 
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on what this natural modification implies. 

The usual (2.8) and the Van Beijeren and Ernst modified form of the 

Enskog equation both lead to the same Navier-Stokes equations and to 

the same expression for the corresponding transport coefficients. How- 

ever, the usual Enskog equation (2.8) does not account properly for 

second and higher order gradients contributions, and may not be used 

to derive (linear and non-linear) Burnett hydro-dynamic equations, 

and corresponding transport coefficients, as it has been indicated 

in the literature. (A discussion of the inadequacy of Enskog equ- 

ation for short wavelength, high frequency phenomena may be found in 

a paper by E.P. Gross and D. Wisnivesky, Phys. Fluids II (1968) 1387.) 

The Van Beijeren and Ernst modified Enskog equation, on the other hand, 

can, in principle, be used for this purpose. 

The Van Beijeren and Ernst modified Enskog equation also becomes 

exact for times much shorter than the mean free time between collisions 

That the standard Enskog, and so the van Beijeren and Ernst equation, 

may however be considered as astonishingly useful approximations is 

something that we have pointed out clearly in section VI. We thus 

only expect that the recent R@sibois - Lebowitz approach to the Enskog 

equation will provide a deeper understanding of the approximation. 
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I. MODEI~ 

1.1. Generalities 

One of the sad facts of life for someone who is seeking to get 

a firm grasp on non-equilibrium statistical mechanics, is the lament- 

ably small number of models for which exact results are available. 

The situation in equilibrium statistical mechanics is much brighter 

in this respect. In particular, there is a variety of latice models 

which, to a certain extent, can be exactly solved. These exact results 

have proved of great value as reference points in the general develop- 

ment of the field. 

Such reference points are, perhaps, of even greater significance 

in non-equilibrium statistical mechanics, where there are a number of 

qualitative problems in need of clarification. The most famous of 

these is probably the basic one of reconciling microscopic reversibi- 

lity with macroscopic irreversibilityo But that is only the first of 

a long list of fundamental questions. Clearly, the usefulness of 

models lies less in their ability to produce numbers to be compared 

with experiment, than in their value as guides in qualitative matters. 

Aside from their usefulness, it would be dishonest for a theore- 

tician to suppress the fact that working with models that are exactly 

soluble in some sense, is quite simply a lot of fun! 

Such a frivolous remark should immediately be counterbalanced by 

a puritanical afterthought: Models can be dangerously misleading. The 

fact that a model is soluble is always due to some particular s~mpli- 

fying features, and precisely those features can be decisive for the 

answers to the questions asked. 

Consequently, whereas the source of worry in the case of general 

formalisms is the postulated existence of objects used, or the sound- 

ness of approximations introduced, the problem in the case of soluble 

models is shifted to the scope and relevance of the model ~tself. 

Thus, physical insight and common sense are called for, and with such 

subjective elements introduced, mistakes are bound to be made. 

Some of these introductory generalities should be recalled in 

specific contexts as we proceed. 
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1.2. Lorentz Models 

The class of models we shall consider in the following are the 

so-called Lorentz models. In such models classical point particles 

without mutual interaction move in a random array of stationary 

scatterers. Lorentz models are glorified pin-ball machines! The 

shape of the scatterers, and the dimensionality of space can be 

chosen freely. 

It is important to realize that Lorentz models are not weird 

products of the imagination of idle theoreticians! In some contexts 

they represent quite reasonable idealisations of nature. The spherical 

one, in particular, is much used to study transport problems with slow 

neutrons in a heavy medium Ill . Also electrons scattered on impurities 

in a metal can be described by a (quantum mechanical)Lorentz model 

[21 . And finally there is the instance Lorentz himself had in mind, 

the gas mixture in which the mass ratio is very large ~3] namely 

We shall not focus on the range of applicability in different 

contexts here, but the examples given show that Lorentz models are 

reasonably close to nature. We can therefore hope that the answers 

they provide to some qualitative questions are relevant in a more 

general context. 

The crucial simplifying feature in Lorentz models is their 

linearity, resulting from the fact that the scatterers are not 

affected when hit by the moving particle. An immediate consequence is 

that Lorentz models can certainly not shed light on the important 

non-linear aspects of non-equilibrium theories. However, the complete- 

ly linear case is still of sufficient interest in itself to warrant 

serious study. Also the understanding of non-linear phenomena pre- 

supposes a firm grasp of the linear ones. 

The exposition that follows will not be a very systematic one. 

Rather, we shall see how Lorentz models in at least two general areas 

have proved useful. First we shall discuss the contraction from a 

kinetic to a hydrodynamic description. And next some central problems 

associated with higher density effects will be indicated. We close 

by advertizing Lorentz models as a challenging and fruitful field 

for rigorous work. 
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II. FROM KINETIC THEORY TO HYDRODYNAMICS 

2.1. The Boltzmann Equation 

Let us,for the time being, assume that the number density n s 

of scatterers is sufficiently small that it makes sense to take the 

Boltzmann equation as the equation of motion for the one-particle 

distribution f(~,~,t) of the moving particles. For infinite space and 

with no external forces, the equation reads 

( - ~ t  ~@ • V) f (F,~, t )  = B f (~,~, t )  (2.1) 

where B is the collision operator. 

If we specialize to the three dimensional Lorentz model with 

spherical scatterers of radius a, the operator is particularly 

simple, due to the isotropy of classical scattering off a sphere 

(not true in two, nor in thirteen dimensions!): 

Bf(~,~, t )  = ~ n s va 2 [ d ~ , [ f ( ~ , ~ ' , t )  - f ( ~ , ~ , t ) ]  . (2.2) 

Since the kinetic energy of a point particle is a trivial constant 

of the motion in Lorentz models, any velocity distribution @ (v), not 

only the Maxwellian, is an equilibrium distribution, and for simpli- 

city we have assumed that all moving particles have the same v. The 
.Jb 

direction of v remains an interesting variable in f(~,~,t), however, 

and in (2.2) the integration goes over all directions of the velocity 

$' after the collision with a sphere. 

The nice thing about (2.2) is, aside from its linearity, that 

it can be written in terms of a projection operator 

B f = ~-1 (p_  1) f (2.3) 
where 

I / d ~  f (~,~,t) P f  = ~ - E  (2.~) 

(clearly ~ = P!), and where 

= (nsV ~a2) -I 

is the mean free time, 

(2°5) 

i . e . ,  the average time between successive 
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collisions. 

Taking Fourier transforms in space and Laplace transforms in 

time 

f~z (~) = ~C°dt e-ZtldSr e-i~'' f (~,~,t) (2.6) 

O 

one obtains the following form of the Boltzmann equation 

1 (P-l) f~z ÷ f~ (t=O). (2.7) (z ~i~.~) f~z : 

2.2. Exact solution 

The beauty of (2.7) is that it can be explicitly solved. We 

shall use a method of solution due to J.M.J. van Leeuwen. Rewrite 

(2.7) as follows: 
~-l f~ (t=o) 

f~z : P f~z + (2.8) 
z +z -1 + i~-~ z + z-l+ i~-~ 

Operate on this equation by P. The result is a closed equation for 

P fez  s i nce  
1 

P ~-i 1 f I: -I 
z÷z-l+i~-~ = Z ] dx (2.9) z ÷ z-l÷ ikvx 

-1 

I ~. kv1: 
= ~ ~an-i Zl:+ 1 " 

With Pf~z determined, (2.8) shows that the complete f~z follows. 
One finds 

-1 
f~z(~) - ~-I [ I tan-i kv~ ] P f~ (7,0) 

z+~-~i~-~ 1 - ~- z~÷l z+~-~i~-~ 

f~, (¢,o) 
+ -I -- (2.10) 

Z~l: ÷iF- v 
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2.3. The Chapman-Ensko~ Ansatz 

But having obtained the exact solution doesn't mean that there 

is nothing more to learn! On the contrary, we are now in the position 

to discuss approximation schemes with the confidence that a complete 

solution gives. 

One old and important question in this context is: How does 

h~dro~ynamics come out of the Boltzmann equation? 

The old answer to this question is provided by the Chapman- 

Enskog theory [3] , which is based on the following idea: After a few 

mean free times the distribution f(~,~,t) should, as far as its time 

dependence is concerned, become a functional of the slowly varying 

hydrodynamic fields which correspond to the constants of the motion: 

number, momentum and energy. 

For the Lorentz model, there is no momentum conservation and 

energy conservation adds nothing to number conservation. So the only 

slowly varying field is the number density n(~,t) = ~ nP f(~,~,t) for 

which the hydrodynamic equation is the diffusion equation 

~--~ n (~,t) = D~ n(~,t). (2.11) 

Correspondingly, the Chapman-Enskog ansatz reduces to 

f(~,~,t) ~ f (~,~ In (~,t)) . (2.12) 
t~ 

In the general non-linear case the analogous ansatz is used to 

construct a scheme of successive approximations where the state of 

local equilibrium is used as a zereth approximation. In the first 

approximation Navier-Stokes hydrodynamics is obtained, together with 

integral equations from which the transport coefficients can be 

determined for a given intermolecular potential. 

The fact that we are considering a linear Boltzmann equation 

simplifies matters. In Fourier-Laplace language, the ansatz (2.12) 

says that for z~ ~gl, f ~z must be a function of k,v and P fez' 

and, in particular, its dependence on P fez must be linear, i.e. 

fez z~,~l fez " 

On the other hand, we shall now show that the Chapman-Enskog 

ansatz in the linear case can be reformulated as an assumption on 
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the spectrum of the eisenvalue problem associated with the Boltzmann 

equation (2.1), namely 

Conservation of the number of particles tells us that in the limit 

k-~O there is an eigenfunction (~) = 1 with eigenvalue = O. 

For small ~ this eigenvalue is small and negative, and the correspond 

ing eigenfunction is called the hydro~namic mode. The Chapman-Enskog 

ansatz, in this language, amounts to the assumption that all other 

eigenfunctions have eigenvalues with negative real parts of the order 
-I -~ . So ~r t ~ ~ one can put 

f~(v,t)~e ~kt • projection of f~(~,O) on ~(v) 

= e l k  (9) - function of ~ only (2.15) 

Laplace transformation of (2.15) then shows that the assumption 

made above on the spectrum of B-i~.~ is equivalent to the Chapman- 

Enskog ansatz (2.15) with ,~'~(~-) =t~(~r) 
We should like to construct the projector onto the hydrodynamic 

mode explicitly, however. And for those of us who learned about the 

eigenvalue problem in quantum mechanics, it is mildly unsettling 

that B - i~-~ is not a hermitian operator. It is symmetric but, 

since B is real, addition of - ik-v clearly makes it non-hermitian. 

So let us make a minor digression to investigate how a projector 

onto an eigenstate of a non-hermitian operator is to be constructed. 

Suppose that A is an operator with eigenvalues a i and "right" eigen- 

states I i> : 

A~i> = ai I i> • 

Correspondingly the adjoint operator A T 

and eigenstates li' > 

has the eigenvalues a~ 
1 

AT~i'> = a.@li' > 
1 

or, equivalently 

<i' ~ A = ai<i' ~ . 
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In other words, the primed states are the "left" eigenstates of A, 

and are in general different from the "right" ones. Their orthogonal- 

ity properties are found in the usual manner 

<i IAlJ> : ai<ilJ> : aj<il j> 

from which it follows that if a,l ~ aj, ~ i'~is orthogonal to ~ j> 

Consequently the coefficients in the expansion of an arbitrary state 

~ in terms of the "right" eigenstates 

l~> =~ ci li> 
i 

are, for the non-degenerate case, given by 

~ilV> 
C- = 

<ili> 

and the projector onto ~ i~ has the form 

li><il 
<i'l i > 

Coming back to the Lorentz model, we define the scalar product 

as 

<*Iz> : 47 

: P <•x). 
• Jb ..~ 

Since the operator B-ik-v is symmetric, 

(2.16) 

its eigenstates and those 

of the adjoint operator B÷i~-~ are simply the complex conjugates of 

one another. Thus, the projector ~, onto the hydrodynamic mode 

~(~) (we drop superscript H from now on) is given by 

P (~) . (2.17) 

So far the discussion has been essentially model independent. 

And very little would change if we turned to the general, linearized 

Boltzmann equation. It would be necessary to consider five hydrodyna- 

mic modes rather than one, but aside from extended book-keeping, 

more complicated linear cases could be treated in the same manner 

as above [4] . 

In the case of the spherical Lorentz model, however, we can 

do better, and replace suggestive handwaving by hard facts [5, 6] . 

We can go back to the exact solution (2.10) and examine the spectrum 
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of ~L~-I ------~(p_l)_ik.vj in detail. And we can calculate the hydrodynamic 

mode and its eigenvalue to all orders in k. Let us start with the 

second task. 

2.~. The Hydrodynamic Mode 

Operation with P on (2.14), where now B : ~-I(p-I), yields 

-P ( i ~ - 9  ~ )  : AkP~; ~ : A k (2 .18 )  

where we have chosen the normalization P~ = I. By the same token 

so that (2.1~) can be written 

"~y~ (9) : z "  ~-~^ -. 
k ~ ik-v 

(2.19) 

With A ~ given by (2.18) this is really a non-linear integral 

equation for ~ k ' but the trick is to take the spherical average 

of (2.19) and appeal to (2.9) with the result 

I i ~an-I kv 
kv ~ TAk,_I . (2.20) 

This equation has a solution for the eigenvalue Ak ' provided 

that kv~/2, and it reads 

^~ = ~-I [-i+ kv~ cot (~v~)] (2.21) 

The hydrodynamic mode then follows from (2.19) as 

kv~ cot (kv~) ÷ i~.~ . (2.22) 

What is the meaning of the eigenvalue Ak ? Take the spherical 

average of (2.15) to get 

n~ (t) ~_ e ̂ P • [f~notion of ~] 

Consequently, for t >~ , n~(t) satisfies the differential equation 

9n~(t) 
k n{t) 

9t 
= - k2D k n~(t) (2.23) 
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where D k is a perfectly nice, regular diffusion kernel from which 

the ordinary diffusion constant D = ~ v2= follows, in the limit 

k-~O. Note that whereas the power series expansion of D k converges 

up to kv~ = W, the hydrodynamic mode does not exist beyond kv~ = W/2. 

The sweeping conclusion is: Convergence radii shouldn't be taken all 

that seriously in physics i 

Let us finally write down the Hydrodynamic Equation in all its 

glory by inverting (2.23) with (2.21) to get 

[ 'B--~ + ~--i ~ (2p)'BP (_~2) pl n(~,t) = 0 (2.24) 

p=l 

Here ~ = v ~ is the mean free path, and B are the Bernoulli 
o 

numbers (BI=I/6 , B 2 = 1/30, B 3 = I/~2, etc.~ in terms of which the 

infinite sequence of higher order diffusion coefficients is expressed. 

2.5. The Contraction 

It remains to discuss the contraction from the description in 

terms of the Boltzmann equation to the simpler hydrodynamic description 

To do this we must consider the non-hydrodynamic part of the spectrum 

of B-i~-~. Or, equivalently, we must study t h e  singularities in the 

z-plane of the exact solution f~z as given by (2.10). 

These singularities are seen to be the following 

Ak 

hydrodynamic pole at Z=~k=-k2Dk . It stays on the (a) The 

negative real axis (corresponding to pure exponential decay). For 

small k it behaves like -k2D, and it moves to z = -~-l as k-~W/2~ 

For k~ ~ W/2 it does not exist. 

(b) A pole at z = -~-l _ i~-~° 

(c) A cut from -I~ -1 - ikv to -I~-1~ ikv due to the integral 

f~(~,O) 
P( ) . 

z ÷I~-i÷ i~'~ 
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This cut is the degenerate version of the continuous part of the 

spectrum generally encountered in connection with the operator 

. 

The contributions from (b) and (c) decay roughly like exp(-t/~) 

so that when kv~<<W/2, two time scales are widely separted: The 

mean free time I~ , and the hydrodynamic time (of the order ~(~k) -2) 

which grows indefinitely as k-~O. 

So, on this model, the Chapman-Enskog ansatz is explicitly 

substantiated. After a few mean free times one is clearly justified 

in (i) neglecting all modes with k~ mW/2 (spatial coarse graining) 

and (ii) for k~ < 11/2, keeping the hydrodynamic mode only. 

A little care is needed in handling the initial value problem, 

though. It was in fact an old puzzle, that in the Boltzmann equation 

the entire distribution f(~,~,0) is needed as initial data, whereas 

if one relies on the Chapman-Enskog assumption, only the initial 

value for the hydrodynamic moment n(~, ¢ ) seems called for. This has 

sometimes been called the IIilbert paradox . 

In the language of the eigenvalue problem, however, this 

"paradox" is neatly resolved. The information needed to determine 

the asymptotic decay is clearly not the spherical part n~(0)=4WPf~(~,O)k 

of the initial data, but the projection T[~f~ (~,0) of f~(~,O) on 

the slow hydrodynamic mode. A formal definition of IT~ was already 

given in (2.17) and with the hydrodynamic mode (2.221 it can be 

written down explicitly 

I~~ k~ 2 P ~ 
= ( sink  ) ( kfk I • ./2 

• k f~ 

, k~ > ~/2 (2.25) 

It follows that the correct initial [7,6] data to be used in 

the context of the Hydrodynamic Equation (2.23) is not 

but 

n~(O) = ¢~ Pf~ (m,ol 

n~ (0) = ~ p(T[~ f~ (~,0)) . (2.261 

How big is the difference? For small k~ (2.22) and (2.25) show that 

in general ~ = 1 @ ~(~1. Consequently 

n~(t) = ~ ( 0 ) - [ 1  @ ~(~) ]  exp [ -  D k 2 t -  (~(k&t)] . (2.27) 

This means that if one is interested in the time scale where 
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Dk2t = ~(I) (surely the most interesting one) and if one uses the 

ordinary diffusion equation, i.e., if D k is replaced by D, then 

~ can be legitimately replaced by 1. If one goes beyond the 

ordinary diffusion equation, however,~- 1 can not be neglected, 

in general. 

This conclusion is not peculiar to the Lorentz model, it holds 

for ordinary fluids also: If one does not go beyond the Navier-Stokes 

level of hydrodynamics, the actual initial values of the hydrodynamic 

fields can be used as initial data, otherwise not. This remark has 

proved relevant in the derivation of the long time tails of the Green- 

Kubo integrands ~8~ . 

2.6. Final Remarks 

As we have seen, the Chapman-Enskog ansatz in the linear case 

amounts to an assumption on the spectrum of the operator B-i~-~ ° 

The beauty of the spherical Lorentz model is that all the general 

statements in this connection can be backed up by explicit calculation 

In the case of the full linearized Boltzmann equation the amount 

of information available depends, of course, on the type of inter- 

action assumed. But the literature on the spectral properties of 

B-i~-~ is growing, and many important results have been obtained ~9]. 

The precise status of the Ghapman-Enskog ansatz in the non- 

linear case is less clear, and remains a challenge! 

Finally, a grain of salt. The simple picture we have presented 

here is a little too good to be true. When higher density effects 

are included, the separation of time scales will no longer be quite 

as clean as the Boltzmann equation predicts. The reason is the long 

time tail ~21, 22, 8 3 in the velocity autocorrelation function. As 

we shall see, the tail is weaker in the Lorentz model ~23~ than ~n a 

fluid, decaying as t -5/2 (in 3 dimensions) rather than t -3/2. But 

it is there. 

Nevertheless, although important modifications are necessary 

(like cuts along the negative real z-axis), and although the status 

of higher order hydrodynamics becomes questionable, some of the 

basic wisdom of the Chapman-Enskog theory as presented here may be 

expected to survive. The borderline problems beyond Navier-Stokes 

hydrodynamics (or beyond the classical diffusion equation) represent 

a very active field at the moment! 
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IIl. HIGHER DENSITY EFFECTS 

3.1. The Einstein Formula for D 

We shall now use the Lorentz model to illustrate some of the 

difficulties encountered when one wants to go beyond the low density 

regime where the B01tzmann equation is adequate. To simplify things 

we shall concentrate on the diffusion constant D, but its relation 

to the generalized kinetic equation will be stressed. 

As a starting point, then~ we need a general formula for D, 

valid for all densities n s of the scatterers. For the other transport 

coefficients, the shear and bulk viscosities and the heat conductivity, 

such formulas are known as Green-Kubo formulas. They were derived 

about 20 years ago [lO], and although few people doubt the results, 

the derivations contain subtleties that should not be passed over 

lightly [II]. 

The "Green-Kubo" formula for the diffusion constant, however, 

goes back to Einstein C12] , and its derivation is as transparent 

as one could wish. Define the mean square displacement as 

A (t) = ~[~(t) - ~ (0)] 2>. According to the diffusion equation 

one has asymptotically 

~ ( t ) ~ 2 d  D t (3. l )  

where d is the space dimensionality. On the other hand, however, 

d~ 
2<¢(t) • (t) - (o)] > 

t 

= 2 dr' ( t )  • v ( t ' )  . 

0 

Since the equilibrium average ~ ~ depends only on the difference of 

the time arguments, one cart write with ~ =t-t' 

t 

2 d~ <{(o) • ¢ (~)> (3.2) 

0 
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and comparing this with the result (5.1) from the diffusion equation 

one finds that D, if it exists, must be given by 

D = ! lira it d~<~(O) • ~ (=)> e 

d t-~ J 
O 

From the derivation it is immediately clear that if the particle 

is enclosed in a finite box, ~(t) cannot grow beyond finite bounds 

and D, as defined above, vanishes. It is therefore tacitly assumed 

that one has passed to the limit of infinite systems before taking 

the limit t-~oo. The necessity of passing to the limits in this 

order is a general feature of a]l Green-Kubo formulas. With this in 

mind we simply write D as the time integral of the velocity auto- 

correlation function 

D :i [ dt <~(o) -~(t)> . (3.3) 
d J 

O 

5.2. D from the Kinetic Equation 

Next we shall show the connection between D and the generalized 

kinetic equation. Since the Lorentz model is linear, such an equation, 

if it exists at all, must be of the form 

t 

~ ~ ) f(~,~,t) [ dt'~d~' K(~-~t-t') f (~,t') (3.4) 
(TE÷ • = 

J 

where K(~,t) is an operator acting on (the direction of) the velocity 

~, and depending on the parameters ~ and t. In general, then, the 

collision operator is expected to be non-Markovian and non-local, in 

contrast to the Boltzmann operator which is Markovian and local, i.e., 

in the notation of (3.4), contains the factor ~(~-$') ;(t-t') . 

(3.3) shows that, to compute D, all we need is the average of 

~(t), conditional on ~(0) = v o. ~ i.e. we can restrict ourselves to 

the spatially homogeneous case and study 

t 
9 f(~t) = ~ dt' X(t-t') f (~,t') (3.5) 

9t J 
O 

with f(~,0) = [(¢-~o). 
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Introducing Laplace transforms one can write the formal 

solution of (3.5) as 

fz (~) = (z- Kz)-I ~(~-~o ) (3.6) 

and the diffusion constant follows as 

D = lim d-iId~o~o-Id~ ~ (Z-Kz)-i ~(~-~o)/~d~o (3.7) 
z --Po 

Here it is again understood that ~I= v is a fixed parameter and 

both the integration over ~ and the ~-function refer to the space 

of possible directions of ~. (This space can be continuous or dis- 

crete, as we shall see.) 

We now perform the integration over ~o in (5.7) and note that 

the resulting integrand is independent of the (allowed) direction of 

~. As a consequence (3.7) can be written as 

-i 
D = lim d -1 ~- (Z-Kz) ~ . 

Z-~P O 

Now, K z is a scalar operator, so Kz$ must be a vector (possibly 

negative) in the direction of ~. Furthermore, the only eigenfunction 

of K z with vanishing eigenvalue is i, with is orthogonal to v. 

(Again a consequence of number conservation). So there is no problem 

with the inverse and we get 

D -I : lim dv -~ $- (Z-Kz)~ 
z-~o 

= - dv -~ ~-~o 7 (3.S) 

Let us check this formula for the three dimensional spherical 

Lorentz model in the Boltzmann limit where K = r-l(p-l). We find 
o 

i V ) -- v-~z D -I = ~ .  (--~- 
V 

as before. 
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3.3. Cluster Expansions 

Very little has been achieved so far. All we have done is to 

establish the connection between the operator K(t), in a generalized 

kinetic equation, and the diffusion constant. What has to be done 

next is to think of some approximation scheme in which we can 

calculate K in successive orders. (And if we are able to calculate 
o 

Ko, the chances are that we can cope with K z and its generalization 

to the spatially inhomogeneous case also). 

Since the Boltzmann equation has the status of a low density 

law in non-equilibrium statistical mechanics, similar to that of 

the ideal gas in equilibrium, it is tempting to try some sort of 

virial expansion of Ko, i.e., of D -1. The Boltzmann term, of ~(n) 

(from now on we drop the subscript s on the density of scatterers), 

is determined by the collision of the moving particle with one 

isolated scatterer in infinite space. In analogy with equilibrium 

cluster expansions one would expect the term of ~(n L ) to be 

determined by the collisions of the moving particle with g__scatterers 

in infinite space [13] • 

There is one immediate source of complications, however. In 

equilibrium, correlations are weighted by combinations of Boltzmann 

factors with the interaction in the exponent. In addition to these 

"statistical" correlations, non-equilibrium theories must cope with 

"dynamical" correlations due to the "memory" of the moving particles. 

And this memory usually extends over length scales much larger than 

the equilibrium correlation length. As a consequence, outside the 

Boltzmann regime, the dynamical correlations are the ones that cause 

most of the difficulties. 

We shall not go into the formalism which develops the collision 

kernel K(t) from first principles, with due care taken in dealing 

with both sources of correlations [1A - 163 . It would simply mean 

too much hard work under the circumstances. In fact, since the most 

important results have a certain intuitive appeal, we shall be con- 

tent with basing the rest of the discussion on those results, stated 

without proof. 

Neglecting for the moment the "statistical" correlations, we 

can formulate the outcome of a cluster expansion of the operator K 
o 

in terms of the following diagrammatic rules: 
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(a) Construct an irreducible event where the moving particle 
.Jb 

collides with ~ scatterers in infinite space located at Q1 ""QL " 

An event is irreducible if its trajectory has no point between the 

first and the last collision such that if cut at that point, the 

~-cluster falls apart. 

i.rredu~ibl( eve.± redu~i~l~. ~v4.± 

(b) Collisions can be of two types: Real collisions governed 

by the laws of classical mechanics; and virtual collisions, where 

the particle moves through the scatterer as if it were not there. 

(c) The contribution of an irreducible event, with [ scatterers 

and a given collision sequence containing m virtual collisions, to 

v -3 ~ - K ~ is the following: 
O 

A ^ 

n ~ (-i) m v i - vf (phase integral) (3-9) 

A 
where vi, vf are unit vectors in the initial and final directions 

of the velocity, and the phase integral is obtained by fixing 

scatterer n~ I at the origin, integrating over the collision 

"cylinder" of the initial collision, and integrating over the positions 

Q2...Q~ of the remaining scatterers, with the constraints imposed by 

the given sequence of real and virtual collisions. 

(d) To find v-3~-Kj and thus D -I, sum over all possible 

irreducible events and add them to the Boltzmann term. 

5-%. Diversences 

It will be instructive to include, in the following discussion, 

three different Lorentz Models: the 2- and 3-dimensional ones with 

(circular) spherical scatterers and the 2-dimensional wind-tree 

model, introduced by Ehrenfest, in which the scatterers are identical- 

ly oriented squares and the particles are allowed to move in the 

directions parallel to the diagonals only. ("Tree"=scatterer, and 

"wind"-moving particle, in Ehrenfest's terminology). 
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Let us first look at a characteristic term with two scatterers, 

i.e. the recollision event 

-.qd.'~ a, 4~- • - ~  2 4  16. 

The most important factor in the contributions from these events to 

D -1, is the phase integral. In the circular and spherical models 

(d=2,3) the contributions from large separation ~ of the two 

scatterers are estimated to be 

L L 

L,~lim ad-iI d~ (a~)d-l~limL--~ a3d-5 I ~-~d~ 

a 3 lim ~n L ; d = 2 
L --,-~ 

~, (3.1o) 

a 5 • const ; d = 3 

This looks pretty bad. Although the integral remains finite in 3 

dimensions, it diverges logarithmically in 2. Of course, (5.10) is 

just an estimate of one term out of a sum of terms all of 0(n2). 

So at this point one could still hope that the diverging terms 

would cooperate to destroy each other. But they won't. The simplicity 

of the Lore~tz models makes a direct calculation feasible and the 

conclusion is that the divergence remains [lg] . 

How about Ehrenfest's wind-tree model? No divergence occurs 

here, since the geometry of the scatterers ensures that scatterer 

n~ 2 stays close to nn 1. But that is not the end of the story. Look 

at a typical term of ~(n3), i.e., with 3 scatterers 

An estimate gives 
L 

lira a ~ [dt ~ a 4 lira L . 

L-~ J L-Poo 

Its divergence is even stronger! Altogether, such estimates yield 

(5.11) 
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shape O'(n 1 ) I ~'(n2) ~'(n 3 ) ~'(n s ) 

¢ 
0 

0 

finite 

71 

11 

finite 

finite 

L 

L 

.~-2 L 

$-2 L 

L S-3 

This divergence difficulty is not a pathological feature of 

Lorentz models, but is in general a stumbling block when standard 

cluster expansion methods are used in non-equilibrium problems [17] Q 

In fact, it serves as an excellent example of the usefulness of Lo- 

rentz models. As you have just seen, the divergence difficulty 

immediately presents itself! In the general case, however, when all 

particles move, the formalisms were so impenetrable that almost 20 

years had elapsed after Bogoliubov proposed his formal expansion 

scheme [18] before the difficulties were definitely uncovered [177 - 

The moral, particularly pertinent in non-equilibrium statistical 

mechanics, is clear: Don't believe in a general scheme until it has 

been successfully tested on reasonable models! 

5.5- What to do about them 

In this case the Lorentz model is not only useful in diagnosing 

the ills, it also points to the cure. What is wrong with the cluster 

expansions is clearly that events with long straight trajectories 

are being overemphasized. A straight segment of the path should be 

weighted with the probability exp(- 4/~ ) that it stays unbroken 

over a length @ . To lowest order in the density the mean free path 

is ~=(n~)-l where ~" is the total cross section of the scatterers. 

But such a damping on the straight trajectories changes the 

picture completely! Take first the logarithmic divergence (3.10) in 

the circular, 2-dimensional model (with f= 2s): 

L -2 ang 
lim n2a 3 ~ d~ e ~ n2a 3 ~n (ha 2) + ... (~.12) 

L-~ ~ (na2~ I) 

Or the linear divergence in the terms with 3 scatterers 
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L 

lim n3a ~ [ d~ e-2an~ ½ n2a3÷ ... (3.13) 
L -~ J 

The damping on the straight segments cures the divergence, but 

it also decreases the order in n! It is easy to see that all of the 

most diverging pieces of every formal order (~n s L s-2) are renor- 

malized to finite contributions of ~(n 2) in 2 dimensions, i.e. they 

contribute to the first correction to the Boltzmann result. In 3 

dimensions the difficulties occur one formal order higher, and thus 

all the most divergent pieces contribute to ~(n3). 

It remains to classify (and calculate!) the "most divergent 

diagrams". The most important class is that of the tin 5 diagrams ~I~ 

with collision sequences of the type 1 2 3 ... £ 1. This is the only 

class of most divergent diagrams in a fluid, but it turns out that 

in the Lorentz models there can be additional ones. In the wind-tree 

model these additional diagrams can even be responsible for a 

qualitative change in the diffusion process! We shall come back to 

that later. 

At this stage a comm@nt should be made on the logarithmic term. 

It is clearly not of fundamental importance here. The divergence 

difficulty is a direct consequence of the cluster expansion method, 

which is fine with short range correlations, but which fails in our 

case due to the long range dynamical correlations. The existence of 

the logarithm, however, is due to a small subclass of diverging 

terms [14] and depends on the differential cross section being a 

smoothly varying function of the scattering angle, in particular at 

back scattering. Thus, in the wind-tree model it is absent. 

Another illustration of the usefulness of Lorentz models is 

related to the previous point. After the discovery of the divergences~ 

it was repeatedly claimed that they would disappear if the problem was 

treated by quantum, rather than classical, mechanics. The point was 

settled by R~sibois and Velarde [20] , and the result is intuitively 

appealing: They showed on the 2-dimensional Lorentz model that the 

logarithmic divergence remains if the differential cross section 

stays finite for back scattering. Thus, if a quantum treatment based 

on cluster expansions is free of divergences, it must be due, either 

to sdditional approximations used (such as the Born approximation), 

or to some very special feature of the model treated. 

Before we proceed, let me stress again that the handwaving 

discussion I have given here can be, and has been, backed up by 

formal arguments, and to a large extent, by explicit calcul- 
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ations [l~ - 16] . Very little has been proved rigorously, however. 

Moreover, it seems quite difficult to do so along the lines followed 

here, since the expansions used produce immediately series that are 

not uniformly convergent. And since infinite resummations are indis- 

pensible, tact is required. Rigor would therefore be most welcome. 

There is little doubt, however, that the results obtained are correct 

as far as they go. 

3.6. Tails 

Recently the existence of long time tails in the Green-Kubo 

integrands has received much attention. During their computer studies 

the hard sphere fluid, Alder and Wainwright [21] first discovered on 

that the velocity autocorrelation function of a tagged particle 

decays like t -d/2 in d dimensions. Many derivations of this (and 

related results) have appeared since [21, 8, 22]. The one of rele- 

vance here is tbat of Dorfman and Cohen [22] who obtained the tails 

from kinetic theory, in particular from the sum of ring diagrams. 

But in the Lorentz model, as we have seen, the ring diagrams 

play the same role of (the most important class of) "most divergent 

diagrams" as in a fluid, so the immediate question is: Does the 

velocity autocorrelation function in the Lorentz model have a long 

time tail? The answer, which is "yes, but", was given by Ernst and 

Weijland ~23] . We shall reproduce their derivation here since it 

contains, in a s~plified form, most of the arguments used in the case 

of a fluid. 

Let us take the spherical Lorentz model in 3 dimensions and 

study the small z behavior of the ring contribution to the Laplace 

transform C z of the velocity autocorrelation function ~(0)-~(t)> I 

Comparing with (5.3) and mildly generalizing (5.7) and (5.8) 

one easily finds, to lowest order in the density, that the ring 

contribution to C is 
z 

C R ~ ^ K R 
^ 

v • v (5.14) 
Z Z 

V 

where D =~3)v2z is the Boltzmann diffusion constant. The sum over 

all rings can be put in the form (to leading order in the density) 

° = v . B ~ B v (3.15) 
z ~ ] (2.)3 kz 
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Here B = z-i (P-l) is the Boltzmann operator and G~z is the correspond 

ing propagator 

G- = (z + i ~-~ - s )-i (3.16) 
kz 

The two Beltzmann operators in (3.15) clearly describe the two 

collisions with scatterer n~ I, but how did the propagator G~z get 

into it? The point is that all intermediate collisions in a ring 

event are with scatterers that are hit only once. i.e., they are 

uncorrelated, and the intermediate excursion is consequently described 

by the Beltzmann equation. Since, furthermore, the particle must re- 

turn to (roughly)where it started, we need the ~-inte~ral over the 

propagator G~z . 

Since B@ = - Z-I~ and since, similarly, the ~-integral over 
A h 

G~zV must be a vector along v, (3.15) immediately reduces to 

^ T R~ i I d3k ~ ^ 
V'~zV = ~ • (2~)3 v • G~z v . (3.17) 

We are interested in the small z, long time, behavior and we 

know that asymptotically everything is dominated by the hydrodynamic 

mode. So just like in (2.15) we write [2~ with (2.17) 

^ I IT ^ Gffz v-. ~ -  v 
z-A k 

If we now operate on (3.17) with P (which makes no difference since 

it is a number) and introduce the normalized mode 

(3.19) 

(3.17) can, with (3.18), be written in the suggestive form 

v̂ I 4 (5.20) 
n 2 (2n)3 z -Ak 

where the scalar product < ~I~> = ^ P(v~) as in (2.16). 

This is as close as we can get to a mode-mode formula [25] in 

the Lorentz model. The important difference, of course, is that in 

the Lorentz model we have only a single hydrodynamic mode to play 

with, whereas in a fluid there are five. Associated with this is the 

fact that 
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• ~P = - ( ) (3.21) = 

L sin k 

vanishes as k 2 in the limit k~o. In the fluid, however, the "currents" 

in the Green-Kubo formulas are not orthogonal to all bilinear combina- 

tions of modes, even in the k~o limit. 

Using (5.1~) and (3.201, and inverting the Laplace transform, we 

find 

~-- ~ e . (3.22) 

The asymptotics is determined by the small k behavior of the integrand, 

and keeping only the leading terms we get, with (3.21) and (2.21) 

<~(o).¢(t)> -- -~- ~ - ~ ' ~  D2 I d3k k2 ~-k2Dt 

6~ D 2 

n(4~ Dr) 5/2 " (3,231 

So there i__ss a tail, even in the Lorentz model. But the extra 

factor k 2 from (3.21) reduces it from t -3/2 to t -5/2 . Generalization 

to d dimensions immediately yields ~23] t-(d/2@ i) . So even for 

d = 2, the velocity autooorrelation function is integrable! There is 

an additional qualitative difference from the asymptotics in a fluid: 

The Lorentz tail is negative. But the similarities outweigh the 

differences. In both cases the ring diagrams are at the heart of the 

mode (-mode) formula, and in both cases the "Green-Kubo" integrands 

decay like powers rather than exponentially. 

3.7. Abnormal Diffusion 

We now turn to some special features of the wind-tree model[16]. 

In addition to the ring events this model has another important class 

of "most divergent diagrams" that has to do with the following: 

A 

1& 
< 
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Two trees very close together can form a reflector such that the 

moving particle starts retracing its earlier steps. The narrower 

the double path created by the reflector, the longer it is likely 

to become, since the only way of splitting it again is by squeezing 

in a corner of a tree. 

Clearly events of this sort will tend to slow down the diffusion 

process. The question is: Will they change it qualitatively? The ans- 

wer turns out to depend on what is meant by a "random" distribution 

of scatterers. Or put differently: It depends on the "statistical 

correlations" which we neglected earlier. 

The crucial point is how easily reflectors are generated. The 

two trees in a reflector are bound to stay close together and thus 

their mutual interaction becomes important. If they are distributed 

as hard squares, i.e., if they are non-overlapping, it becomes in- 

creasingly difficult to have them act as reflectors, the narrower 

(and thus, longer) the double paths one considers. The result is 

that for non-overlapping trees, these events don't cause qualitative 

changes, they just reduce the diffusion constant somewhat. 

However, if the trees are allowed to overlap freely, reflectors 

for arbitrary width of the double path are easily generated, and it 

turns out that the mean square displacement no longer grows linearly 

with t, but (for small densities, na2~ I ) behaves like [26] . 

4/31 na 2 
& ( t ) _ ~  4 Dt  . ( t / ~ )  . ( 3 . 2 4 )  

Here D and ~ are the diffusion constant and mean free time obtained 

from the Boltzmann equation. Thus, the diffusion process is qualita- 

tively slowed down by the retracing events in the overlapping case. 

In the formalism this is refiected by the "most divergent 

diagrams", associated with the retracing events, summing up to in- 

finity [16] , even after each event has been renormalized by the 

mean free path cutoff as in (3.12-13). This divergence doesn't reflect 

a weakness in the formalism. On the contrary, from (3.2) and (3.24) 

it is evident that the diffusion ~oonstant does not exist in this case. 
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3.8. Computer Work 

Finally~ let me briefly mention that the wind-tree model has 

been extensively studied by Wood and Lad. [27] . They made molecular 

dynamics calculations with a "forest" of 8192 trees~ followed the 

trajectories up to 25.000 collision times, and averaged over a huge 

number of configurations and trajectories. The qualitative difference 

between the non-overlapping and the overlapping case is strikingly 

demonstrated by their results. They also verified the asymptotic law 

(3.24) to high accuracy. 

~I ' "~"~.~% 
I ~  . . . . . . . .  ' . . . . . . . .  ' . . . . . . . .  i . . . . . . . .  i . . . . . .  i . . . .  

,~ ,d ~2 ,o3" ~4"  
fwm~ber o~ ~lli~Lon ~mes 

Recently, Bruin [28] published results of a similar study of 

the 2-dimensional Lorentz model with circular scatterers. The 

existence of a logarithmic term in the density dependence of the 

diffusion constant is here verified" experimentally" for the first 

time. The t -2 tail of the velocity autoeorrelation function cannot 

be verified by his results~however. Whether this is due to the fact 

that the computer results become shaky beyond 8 collision times is 

hard to say. We should not forget that the t-(d/2+l)-tail was cal- 

culated by concentrating on the ring diagrams. We did not prove 

that those are the only important events for the asymptotics~ al- 

though the evidence from the fluid supports this conjecture! 
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IV. RIGOROUS RESULTS 

4.1. The Grad Limit 

The heading looks impressive. But the truth is that I shall 

present very few rigorous results, 29 and shall prove nene. This 

is really a salesman's talk: My thesis is that Lorentz models are so 

simple that it should be possible to do much more rigorous work on 

them than I, at least, am aware has been done. On the other hand, 

Lorentz models are sufficiently complex. There are truly non-trivial 

statements to shoot at! 

A valuable start along these lines has been made by Gallavotti 

[30~ and one of the problems he considered was that of proving the 

Boltzmann equation in the Grad limit. Grad first raised the question 

of whether there is a limit in which the Boltzmann ~quation is exact. 

Letting n-~o with the interactions fixed is not a very attractive 

possibility, since everything goes to zero or to infinity in that 

limit. So Grad instead suggested the following limit [31~ : Keep the 
d-1 

mean free path constant, i.e. fix the combination na where a is the 

range of the interaction. With nad-l= const., let n-poo and a--Po. 

Having the number density grow indefinitely looks ominous, but re- 

that it is the dimensionless density, ~ = na d, that counts. member 

And ~-~ o in the Grad limit! 

Since the model is linear, it is sufficient to study the Green's 

function G(~,~,t~o) defined as the probability that a moving particle 

has the phase (~,~) at time t, given that the phase was (o,~) at 

t~o. One has to say precisely how the scatterers are distributed (for 

example: Are they allowed to overlap or not?), but details of this 

sort are expected to become irrelevant in the limit. 

As Gallavotti [30~ has suggested, the way to proceed is to 

sum over all paths that lead from (0,~ o) to (~,~) in a time t. What 

has to be proved is that the only paths that survive in the Grad 

limit, are those that don't intersect themselves, and that don't 

contain more than one collision with any given scatterer. Thereby 

the Stosszahlansatz is proved, and the Boltzmann equation for 

G(~,~,t [ ~o ) is an immediate consequence for t~0. 

It is easily seen that any given "non-Boltzmann" event does 
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indeed get a vanishing weight in the Grad limit, but I think it 

remains to be proved that also the sum of such events becomes 

negligible. There is no doubt what the result is, but as a warming 

up exercise I suggest that you fill in the gaps in the proof~ 

In so doing you should look for the necessary and sufficient 

condition on the interactions for the theorem to hold. It is not 

true for all interactions: Consider the following type ~32] of 

oriented, hard scatterers: 

Such a weird shape would not give the Boltzmann equation, even in 

the Grad limit! 

At this point it is natural to raise the old objection: How 

can it be possible to derive the irreversible Boltzmann equation 

from reversible mechanics, with or without a limiting procedure? 

Well, t=0 is a very special time here, namely the time when we 

average over all possible configurations of the scatterers. So you 

shouldn't expect time reversal symmetry except at t=O. And at t=O 

there i__ss symmetry. For t< 0 the Green's function obeys the Boltz- 

mann equation with t-~- t ! 

Away from the Grad limit life becomes more complicated, but 

also more interesting. I shall not make a long list of unproven 

statements about Lorentz models with higher density effects. Some 

have already been made, and as an example, try the following: Prove 

that the diffusion constant exists under suitable restrictions. Or 

more ambitiously: Prove an existence criterion that distinguishes 

between the non-overlapping and overlapping wind-tree models. 

#.2. Percolation Problems 

Let me finally mention that for very high density, the Lorentz 

models give rise to interesting dynamical percolation problems 

Z16, 33~ - As an example, take the wind-tree model where the trees 

can freely overlap. Then there is a finite probability that the 

moving particle is trapped in a finite volume. The simplest way of 

trapping it is by using # trees 
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So for small densities the probability, PT' of being trapped is of 

(n4). 
What happens as the density is increased? In analogy with the 

percolation problem on lattices, it is reasonable to guess ~16] at 

something like this 

L 

i.e., beyond the critical density nc, the particle is surely trapped 

in a finite volume. The fact that PT(n)=l beyond a certain finite n 

has actually been proved. It is not even difficult, if one appeals 

to well known theorems on the site and the bond problems in percolation 

theory on a square lattice. In this way the following upper bound on 

the critical density has been established ~3~ 

2 
n a ~ 2 ~n 2 (4.1) 
C 

It is much more difficult to prove that nc, COnst~O, i.e., to 

prove that for small enough densities, the particle does not have to 

be trapped. The difficult part of the proof is related to this: Even 

if there is a hole in the "box" where the particle moves around, how 

do we know that the particle finds it, and gets out? 

Clearly this problem belongs in the category of er~odic 

~29~ , and it can be formulated like this. Construct problems an 

arbitrary box with straight lines and right angles. 

Allow islands constructed in the same way. Let a point particle start 

anywhere, and in a direction 45 ° to the sides. Prove that the trajec- 

tory is dense, i.e., prove that the particle sooner or later comes 

arbitrarily close to any point in the box. 
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If the lengths of the sides of the box are rationally connected, 

i.e., if there are relations of the type 

N 
mi ~i = 0 , (4.2) 

i=l 

where h i is the length of the i'th side, and m i is an integer, it 

is easy to see that the statement need not be true. 

On the other hand~ under the assumption that there are no 

relations of the type (4.2), the theorem has recently been proved by 

J.F. Aarnes [35] - On the basis of this theorem, the construction of 

a positive lower bound on n c is comparatively straight forward ~34] o 

Needless to say~ all this tells us nothing about the nature of 

the singularity at nc! 

4.3. Absolutely Final Remarks 

In these lectures we have used Lorentz models as a testing 

ground for certain problems in non-equilibrium statistical mechanics. 

Some of the problems treated, like the relation between kinetic 

theory and hydrodynamics, are of obvious relevance in a more general 

context. Others, like the special properties of the wind-tree model 

with overlapping scatterers, are hardly of immediate concern to 

experimentalists. In fact, one of the really hard problems facing 

the model fan is: When to stop? 

Before ~ come to a halt, let me nevertheless stress the obvious 

once more: All one can learn from Lorentz models has to do with li- 

near effects. To learn about non-linear aspects of non-equilibrium 

problems, one needs a simple, non-linear and in some sense solvable 

model. This may sound self-contradictory. But the fact is that 

progress has been made in this direction lately [36~ . The title of 

that story would be: "What can one learn from Pomeau models?" 



366 

REFERENCES 

i) K.M. CASE and P.F. ZWEIFEL, Linear Transport Theory, (Addison- 
Wesley), Reading, Mass. (1967), Chap. 7 

2) See R. PEIERLS, this volume; R. KUB0. this volume; W. KOHN and 
J.M. LUTTINGER, Phys. Rev. 108, 590 ~1957). 

3) S. CHAPMAN and J.G. COWLING, Mathematical Theory of Non-Uniform 
Gases, (Cambridge University Press), London,3rd ed. (1970). 

4) M. BIXON, J.R. DORFMAN and K.C. M0, Phys. Fluids 14, 1049 (1971) 
P. RESIBOIS, J. Stat. Phys. 2, 21 (1970), and in Trreversibility 
in the Many-Body Problem, J.--Biel and J. Rae, eds. (Plenum Press) 
New York, (1972). 

5) H.P. McKEAN Jr., J. Math. Phys. ~, 547 (1967) 

6) E.H. HAUGE, Phys. Fluids, 13, 1201 (1970) 

7) H. GRAD, Phys. Fluids, ~, 147 (1965). 

8) M.H. ERNST, E.H. HAUGE and J.M.J. VAN LEEUWEN, Phys. Rev. Letters 
25, 1254 (1970)~ Phys. Rev. A_~, 2055 (1971). 

9) See, for example, J.A. McLENNAN, Phys. Fluids ~, 1580 (1965). 
I. KUSCER and M.M.R. WILLIAMS, Phys. Fluids 10, 1922 (1967). 
~.0. JENSSEN, Phys. Norvegica ~, 179 (1972). 

i0) M.S. GREEN, J.Chem.Phys. 20, 1281 (1952)~ 22, 398 (1954). 
R. KUB0, J. Phys. Soc. Japan, 12, 570 (1957-7; R. KUB0, this 
volume. 

ii) N.G. VAN KAMPEN, Phys. Norvegica ~, 279 (1971). 

12) A. EINSTEIN, Ann. Phys. 17, 549 (1905). 

13) E.G.D. COHEN, Physica 28, 1025; 1045; 1061 (1962). 

14) J.M.J. VAN LEEUWEN and A. WEIJLAND, Physiea 56, 457 (1967); 
!gs, 35 (1968). 

15) W. HOEGY, thesis, University of Michigan, Ann Arbor, Mich. (1967) 

16) E.H. HAUGE and E.G.D. COHEN, "Det Fysiske seminar i Trondheim" 
N~ 7,(1968); J. Math. Phys. I0, 397 (1969) 

17) J. WEINSTOCK, Phys. Rev. 132, 454 (1963); 140A, 460 (1965). 
J.R. DORFMAN and E.G.D. CO~N, Phys. Letter--~__66, 124 (1965), 
J. Math. Phys. ~, 282 (1967). R. GOLDMAN and E.A. FRIEMAN, 
Bull. Amer. Phys. Soe., 10, 531 (1965); J. Math.Phys. 2, 2153 
(1966); ~, 1410 (1967). 

18) N.N. BOGOLIUBOV in Studies in Statistical Mechanics, vol. I, 
J. de Boer and G.E. Uhlenbeck, eds., (North-Holland), Amsterdam 
(1962). 

19) K. KAWASAKI and I. 0PPENHEIM, Phys. Rev. 139, A 1763 (1965). 

20) P. RESIBOIS and M.G. VELARDE, Physica 51, 541 (1971). 

21) B.J. ALDER and T.E. WAINWRIGHT~ Phys. Rev. All , 18 (1970) 

22) J.R. DORFMAN and E.G.D. COHEN, Phys. Rev. Letters 25, 1257(1970); 
Phys. Rev. 46, 776 (1972) 

23) M.H. ERNST and A. WEIJLAND, Phys. Letters 34A, 39 (1971). 



367 

24) Y. POMEAU, Phys. Rev. A3, i174 (1971)~ J. Math. Phys. 12, 2286 
(1971) 

25) L.P. KADANOFF and J. SWIFT, Phys. Rev. 166, 89 (1968). K. KAWA- 
SAKI, Ann. Phys. (New York), 61, 1 (197~- R.A. FERRELL, Phys. 
Rev. Lett. 2%, 1169 (1970). 

26) H. VAN BEYEREN and E.H. HAUGE, Phys. Letters 39A, 397 (1972). 

27) W.W. WOOD and F. LAD0, J. Comp. Phys. Z, 528 (1971). 

28) C. BRUIN, Phys. Rev. Letters 29, 1670 (1972). 

29) Some important results on the ergodic properties of Lorentz 
models with convex scatterers (Example: Spheres. Counterexample: 
Square trees) are presented by J.L. Lebowitz in this volume. 

30) G. GALLAVOTTI, Phys. Rev. 185, 308 (1969). 

31) H. GRAD. in Handbuch der Ph2sik, S. FlUgge, ed. (Springer-Verlag), 
Berlin (1958), Vol. XII, p. 214. 

32) H. VAN BEYEREN, private communication. 

33) D.J. GATES, J.Math. Phys. 13, 1005 (1972)~ 13,1315 (1972). 

34) E.H. LIEB and E.H. HAUGE, to be published. 

35) J.F. AARNES, to be published 

36) J. HARDY and Y. POMEAU, J. Math. Phys. 13, 7 (1972), 13, 1042 
(1972). J. HARDY, Y. POMEAU and O. de P~ZIS, Phys. R~-~. Letters 
31, 276 (1973), J. Math. Phys. 1_~4, 1746 (1973). 



CONDUCTIVITY IN A MAGNETIC FIELD 

R. B. Stinchcombe 

Io 

I.i 

II. 

2.1 

2.2 

2,3 

2.4 

III. 

3.1 

3.2 

IV. 

4.1 

4.2 

4.3 

4.4 

V. 

VI. 

6.1 

6.2 

Department of Theoretical Physics 
12 Parks Road, Oxford, England 

INTRODUCTION 

Natural representation 

DERIVATION OF THE BOLTZMANN EQUATION IN A MAGNETIC FIELD 

Density matrix equation of motion 

Ordering of equations in weak scattering limit 

Boltzmann equation for arbitrary Wc~ 

Corrections 

SOLUTION OF THE BOLTZMANN EQUATION 

Isotropic systems 

Anisotropic systems 

Q~ANTUM EFFECTS 

Landau representation 

Longitudinal case 

Transverse case 

Discussion 

COLLISIONS BETWEEN CARRIERS 

COLLISIONS WITH PHONONS 

Transport equations with phonon scattering 

Magnetephonon resonance 

VII CONCLUDING REMARKS 



36"9 

I. INTRODUCTION 

• hese lectures will be concerned with classical and quantum 

electrical transport in the presence of magnetic fields, typically 

in a metal or a semiconductor. 

As is well known (see for example Peierls, 1955) in the absence 

of magnetic fields the electrical resistance of a material results 

from deviations of the crystal lattice from perfect periodicity. 

Such deviations are caused by: 

(a) Lattice vibrations. 

(b) Impurities, boundaries and lattice imperfections. It is 

usual to separate these from the perfect lattice effects, which are 

accommodated in the usual Bloch states. 

For a non zero field H, it is again appropriate to separate off 

the perfect lattice. The conduction transverse to the field is fin- 

ite even in the absence of (a) or (b), but (as in the zero field 

case) to limit the conduction along the field H it is essential to 

include some collision processes. Elastic collisions, e.g., with 

impurities, provide the simplest model to examine. ~he idealisation 

usually made is to neglect interactions between the charge carriers. 

We shall at first do this, only later returning to a discussion of 

the features so omitted. 

In classical situations transport may be discussed in terms of 

a distribution function measuring the number of particles likely to 

be in a given place with a given velocity at a given time. The 

Boltzmann equation determines the steady state distribution function 

by requiring that its total rate of change, due to external fields 

and collisions, should vanish. The magnetic field enters through 

the effects of the Lorentz force. 

In the absence of a magnetic field the distribution function 

can be redefined in a quantum mechanical form as the occupation 

probability n(~) of the Bloch state ~. The usual transport equation 

then takes the form 

9n + _ (l.l) 

H e r e  

# 9.71 9 n (k) ( l .2 )  

.FF being the Lorentz force (for zero H). [9~/9{)collision,ths rate 
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of change of n due to collisions, is usually obtained by combining 

transition probabilities. 

For non-zero H, the transport equation is usually generalised 

by writing 

(1.3) 

where ~ is the electron velocity in state ~. 

Such a description needs justification for several reasons. 

First, as is well known, even in zero field the description in terms 

of n(k) is incomplete, since n(k) corresponds to just the diagonal 

components of the density matrix ~T; n(k) is therefore sufficient 

only for obtaining average values of operators diagonal in k~repres- 

entation unless the density matrix is diagonal at all times. A 

"repeated random phase assumption" to make it so was a serious weak- 

ness of early derivations of (1.1). It was later suggested (Peierls 

1955) that in the case of impurity scattering the assumption could be 

replaced by assuming the scatterers to be randomly distributed, since 

in k-representation the off-diagonal elements of ~T would be expected 

to be small in a system which is on average homogeneous. Such prop- 

erties of the scattering were exploited by Kohn and Luttinger (1957) 

and by Greenwood (1958) in a derivation of the zero field Boltzmann 

equation from the equation of motion of the density matrix. More 

powerful techniques developed by Van Hove (1955) were used by Chester 

and Thellung (1959) to give a more general treatment for the field 

f r e e  c a s e °  

When a magnetic field is present it is n~ clear in what "natural 

representation" the density matrix is approximately diagonal at all 

times. In particular the density matrix of a system which is in ab- 

sence of the field on average homogeneous will no longer be diagonal 

in momentum representation. There would at first sight seem to be 

no reason why in the presence of a magnetic field the system should 

be described by a stationary distribution function n(k) satisfying 

an equation of the Boltzmann type, except in some weak field limit. 

The original derivation (Jones and Zener 193&) of the Boltzmann 

equation (1.1)-(1.3) in the presence of a magnetic field used the 

repeated random phase assumption within a wave-packet analysis using 

plane waves as a basis. Such a derivation requires 

(1.~) 



371 

where ~O c is the cyclotron frequency eH/mc and Z is a collision time. 

(1.4) is essentially the condition that the electron should not deviate 

appreciably from a straight line between scatterings. The Boltzmann 

equation has however been applied successfully to situations in which 

~c~l indicating that a method of derivation not depending on (1.4) 

should be possible, and we shall discuss one such method shortly. 

Nevertheless the field should not be too strong if the Boltzmann 

equation is to be applicable: (1.3) neglects the fact that since the 

electron can (for Wc~ ~ I) describe closed orbits in the plane at 

right angles to the field direction, the energy levels will be in part 

discrete. Effects, e.g., the de Haas-Schubnikov oscillations, 

associated with such a quantization would be expected to show up for 

~cm~ I when the separation of the levels exceeds KBT: 

(1.5) 
Even more extreme quantum effects can be expected if the level separ- 

ation approaches or exceeds the fermi energy 

~ ~ ~ (1.6) 
since then only the lowest levels will be occupied ("extreme quantum 

limit" - Argyres and Adams 1956). 

Such effects are altogether absent from the Boltzmann equation 

and require a quantum approach. We shall return to this point later. 

We first discuss the derivation (Stinchcombe 1961) of the Boltz- 

mann equation along the lines employed by Kohn and Luttinger and by 

Greenwood for the field free case. The derivation will require 

certain limitations (not (1.4)) on the strength of the magnetic field, 

and for simplicity we consider weak scattering by an irregular static 

potential (e.g., impurity but not phonon scattering). We shall want 

later to consider other scattering mechanisms and to discuss galvano- 

magnetic phenomena special to them. 

The derivations by Kohn and Luttinger, Greenwood, Van Hove and 

Chester and Thellung for the field free case rely on the fact that 

for an initially homogeneous system evolving under the influence of 

a homogeneous perturbation the density matrix remains diagonal at all 

times. The perturbation to be considered is the electric field and 

the internal scattering mechanism. The latter is only homogeneous 

in some average sense and so the argument requires also an averaging 

procedure. This gives rise to the dissipative nature of the final 
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equation and the density matrix turns out to be not exactly diagonal, 

but the off-diagonal part is small if the number of degrees of free- 

dom is large. 

I.I Natural representatiop 

To generalise the derivation to the case where a magnetic field 

is also present we need first to find a representation which diagon- 

alises the density operator of a homogeneous system in a magnetic 

field, and in which the average properties of the scattering mechanism 

can be exploited. The Landau state representation (or its general- 

isation for the ease of electrons in a periodic potential) is a poss- 

ible candidate since it does diagonalise the density matrix of a uni- 

form system, but it would have to be checked whether it leads to the 

required properties of the averaged scattering matrix elements. This 

will be considered later. An obvious disadvantage of the Landau 

representation is that it is not easy to extract from it low field 

limits and in particular it provides no hope of a simple relationship 

to the k label in n(k) in the Boltzmann equation. 

We proceed instead to find a possible representation by general- 

izing to the case of H j 0 the usual arguments which for H = 0 lead 

to a Bloch theorem. We first consider the configuration space matrix 

element~D(~o)~ of any function D of the Hamiltonian~o describing 

non-interacting electrons in the perfect lattice in the presence of a 

uniform magnetic field in the z direction° Taking vector potential 

~:(O,Hx,O) the Schrodinger equation for the wave functionallY> of 

a single electron has the same dependence on y and z as in the absence 

of H. The wave function therefore has the same dependence on y and 

z as the usual Bloch wave. It may therefore ~e written 

(1.?) 
where ~ has t he  p e r i o d i c i t y  o f  t he  l a t t i c e  w i t h  r e s p e c t  t o  y and z .  

i s  a band i n d e x  and < l i s  t he  quantum number n e c e s s a r y  t o  comp le te  

the specification of the state. By using the fact that D is diagonal 

in this representation it may then be shown that 

(1.8) 
where ~ is any lattice vector. 

Information about the x-.dependence of the wave function can be 

obtained by first solving the Schrodinger equation in the gauge ~: 
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(-Hy,O,O) and then transforming back to the original gauge. The 

gauge transformation corresponds to the addition of a rotation-free 

part (the gradient of the scalar f= H x y) to the vector potential 

and so the wave function changes by a phase factor exp~-i@/~c)f~. 

In the gauge A: (-Hy,O,O) the x-dependence of the wave function is 

that of a Bloch wave. Hence in the original gauge the wave function 

is 

(1.9) 
where~k ~J! has the periodicity of the lattice with respect to its 

dependence on x, and 6 = (eH/~c). By again writing ~xlDlx') in terms 

of the matrix elements <~IDIK) it is a straightforward matter to obtain 

the behaviour o f  <xlDl x'> when x and x' each change by E x. In this 

way one finally arrives at 

~ - :  x_ll)l x_'-~ >" 
(1.10) 

The general solution of this equation is 

(1.11) 

where ~ has the periodicity of the lattice with respect to its depend- 

ence oll X, and 

I 

The property (I.II) of the matrix element is unchanged when a 

uniform electric field it is added to the system. This may be easily 

seen by introducing the field by the addition of a time-dependent 

part -clt[vdt-- to the vector potential. 

To show that the property is preserved when a scattering mechanism 

is introduced is more difficult since it is only expected to be main- 

tained in some average sense. We consider scattering by a random 

distribution of N static impurities with total scattering potential 

. (I.15) 

Consider a product of matrix elements of the scattering potential in 
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some representation I<> : 

= >... l£ t I ¢;> 

~, nl -- -- -- - -- - 

The randomness of the distribution can be exploited by averaging over 

all distributions. Then the multiple sum vanishes unless the exponent 

in the summand can be split into groups ~i~s'~nss in any one of which 

all r n ' s are equal and for which ~ ~s = O. Thus the average of 
S S 

(I.14) vanishes unless the sum of all the ~Js is zero. Suppose that 

one of the quantum numbers in the complete set ~ refers to a component 

of momentum or quasi-momentum. The difference of the values of this 

component in the states I~o> and I~i) will be a component of ~ which 

vanishes because of the averaging. 

Now if D' is any function of the Hamiltonian ~+W of the system 

with scattering, in the presence of the magnetic field~ D' can be 

expanded in powers of W about its zero-scattering value D (using the 

usual S-matrix methods) and the resulting product of operators can be 

evaluated in the represen*ation I~> given by (I.7) and (1.9). Making 

use of the property deduced above of the averaged products of W's it 

is evident that the large part of D I is diagonal with respect to the 

wave vector quantum numbers appearing in the labelling of (1.7) and 

(1.9). (The replacement of the product of matrix elements by its 

average introduces errors of order I/N.) Hence in the same way as 

before equations of the type (1.8), (I.I0), (I.II) can be derived 

for the large part of D'. 

We remark that D' could be the density matrix ~T of the system 

at some arbitrary time after the scattering and electric field have 

been applied. The averaging procedure makes it plausible that the 

functional form (l.ll) is possessed by a large part of D' at all times. 

The large part of D', or more particularly ~T ~ then simplifies in the 

representation defined by 

(1.15) 

where ~(~) is the Bloch function for electrons in the perfect lattice 
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in zero H, and [ denotes the complete label (~,~) in the reduced zone 

scheme: 

The method we have used to discuss the diagonality is similar 

to the arguments of Van Hove (1955) for the zero field case but is 

not claimed to be as rigorous in its treatment of the scattering. 

The method tells us nothing about the band suffices ~I' ~2" By 

analogy with the zero field case we suppose that a rigorous treatment 

will confirm that ~T(~I;~2) is not exactly diagonal in the label ~ but 

that the off-diagonal part is small. This will be seen to be the 

case in deriving the Boltzmann equation by the Kohn and Luttinger- 

Greenwood method. 

Before embarking on such a derivation it is important to note 

how average values of currents can be obtained from _ ~T(~;~). The 

value --~ of the ~th component of the current is Tr[~T~ ] . _  _ average 

~aking the trace in ~-representation and obtaining ~ I~TI~ in terms 

of ~T(~;~I) by using the inverse of (1.15) it can be shown (without 

the use of (1.16) that ~ reduces exactly to 

w' - - (1 .17)  

where the matrix element is of the zero field current operator between 

Bloch wave states (i.e. of the field-free system). A similar result 

holds for the average energy. 

Apart from the off-diagonal character of the band labels ~T(~#;~ ) 

behaves in (I.17) as though it were the occupation probability of a 

(zero field) Bloch state, but it is obvious from (1.15) that ~T(~;£ ~) 

is a much more complicated function. In the free electron model (no 

crystal lattice) (1.15) may be written as follows: 

(1.18) 

which corresponds to the Wigner representation (Wigner 1932) for a 

function of the two non-commuting operators r and 

-- _ c -- ( 1 . 1 9 )  



376 

corresponds to the classical velocity ~ and it is significant that 

2 is the variable that appears in the classical Boltzmann equation 

which is valid at arbitrarily high fields. 

Finally we note that our discussion, starting from (1.14), of 

the effect of impurity scattering on diagonality properties could be 

applied to other representations than that considered here. We shall 

later investigate the Landau representation in a related way. 

II. DERIVATION OF THE BOLTZMANN EQUATION IN A MAGNETIC FIELD 

2.1 Densit~ matrix equation of motion 

The homogeneity of the system (in an average sense) can be expect 

ed to produce a sharp distinction between the diagonal and the off- 

diagonal elements of the density matrix in the representation introd- 

uced above. There£ore, following Kohn and Luttinger and Greenwood's 

method for the H = 0 case we shall split the equation of motion of 

the density matrix into diagonal and off-diagonal parts and eliminate 

the off-diagonal parts to obtain a Boltzmann equation for the diagonal 

parts (Stinchcombe 1961). 

The system considered is one of non-interacting electrons moving 

in a perfect periodic lattice under the influence of electric and 

magnetic fields, and scattered by a random distribution of static 

impurity centres. The total Hamiltonian for each electron is 

where 

~ - r  = ;~° + Vd + l-IF (2.1)  

~. ~)l .  (2.2)  

= ~. 
HF -¢ - ~, (2.3) 

and W is the interaction (1.13) with the impurities. V o is the 

lattice potential. 

It is assumed that in the infinite past the system is in equil- 

ibrium in the absence of the electric field, and that the field is 

switched on in the following manner: 
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_ _  ., S > ~ ( 2 . 4 )  

Then the density matrix of the complete system may be written 

(2.5) 

where ~F is the change in the density matrix caused by the electric 

field (~F(-m)=O) and ~ is the fermi function of (~o+W). For the Ohmic 

conductivity ~F is only required to first order in ~. To this order 

~F is determined by the terms linear in [ in the equation of motion 

of the density matrix. By taking out a factor e st from ~F and H~, 

the linearised equation of motion becomes 

where 

and 

with 

= ( 2 . 7 )  

(2.8) 

~i -- - E E . X 
- - (2.9) 

f is time-independent. It is the correction to the density matrix 

at time t=O, when the field has reached the value ~. 
m 

We now write f and C in the representation defined by (1.15), 

denoting the resulting elements by f(~l;e2) and C(~I;~2). By writing 

(2.6) in the ~-representation and then using the transformation (1.15) 

and its inverse, the equation of motion for the density matrix is 

converted into the following equation for f(ll;e2): 

where 
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_ +, (g9 Y+; (~'3 

- ( & + l ~ , l ~ 2 ¢ -  + ~ ++,++Jg+: t+") (2 .11)  
a n d ~ J i s  g iven s i m i l a r l y  i n  terms of  ma t r i x  +lements of W. In  (2 .11 ) ,  

o,, ~,, × . ,  t ( × , , + ~ 9  e = x -  , = ~ , 

All the terms on the right hand side of (2.10) come from the commutator 

of f with (~+W) and (c.f. (2.11)) each consists of two terms which 

can be shown to be complex conjugates of each other. Note also that 

from (1.11) it is possible to write 

(2 .12)  

where h has the periodicity of the lattice with respect to its ~-dep- 

endence. 

Our earlier considerations suggest that because of the randomness 

of the scattering centres f(k~;k~') should be much larger than 

f(k~;k~ ' ). We shall also find that, except when bands may overlap, 

f(k~;k~) is much larger than f(k~;k+~°). Proceeding with this in 

mind we split (2.10) into diagonal ( ~' = ~) and off-diagonal ( g' ~ ~) 

parts. The equations obtained in this way can be written symbolically 

as 

+q = "a + Ctc+-,.d')%a -('..+ 
(2.13) 

~d 

(2 .14)  

where the subscripts d, nd denote diagonal and non-diagonal parts of 

f's or C's. The subscripts and superscripts on the integral operators 

and~refer to the character of the f's they connect. For example 

~dd means ~?(~;6]el;l I) ... to act on f(£1;~l). 

2.2. Order ipg of equations in weak-scattering limit 

We attempt to solve these complicated coupled equations in the 

weak scattering limit. In the treatment by Kohn and Luttinger of 

the zero field case it is shown that in this limit the equations have 

a solution which is independent of the rate s at which the electric 
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field is switched on provided s Ca I/~- where m is of the order of the 

relaxation time of the system. We shall take the weak scattering 

limit in such a way that s is about equal to 1/4 (m depends inversely 

on the scattering) and only later make use of the fact that in prac- 

tice the rate of application of the electric field is always such 

that st~l. 

It will turn out that the restriction s-~ i/z is not the only 

one that has to be imposed. In a similar way the size of the mag- 

netic field has to be introduced into the limiting process. So show 

this we demonstrate how an attempt to solve the equations in the weak 

scattering limit for arbitrary fields breaks down. 

Replacing W by ~w W, where Aw is a dimensionless parameter meas- 

uring the strength of the scattering,compared to the fermi energy, 
2 

since Z~ ~2 our restriction on s requires that s = A s s o where 

~s ~- A w and s o is some reference frequency independent of Aw" The 

integral operators and inhomogeneous terms can then be ordered with 

respect to ~w: K-'- "~ ~ 

7~I- ~ ~'~ 

C _  ~ ~'~ (2.15) 
(were it not for the band labels, Cnd would vanish to zero th order 

in ~w using the property (i.II) of functions of the Hamiltonian ~0 ). 

Solving (2.1z#) formally for fnd in terms of fd' and substituting 

into (2.13) shows that;to lowest order in ~wJfd is of order Aw ° and 

is determined by 

= q -  -' 

(2.16) 

Now in the limit of zero field the integral operators ~_dd, 

~ndd,~dnd, and~dd vanish. For in this limit the general kernel 

becomes 

= ~F~-Fe')$ee,~z'd + < t l W l t , > ~ ' t l - < L ~ I I A ' I l l ' ) ~ ¢ , j  (2.17) 

where the matrix elements are between Bloch states and 

E~=<~l~o H=Olg~ is the zero field Bloch energy. 

Hence in zero field the coefficient of fd in (2.16) is zero. 

The equation only gives a solution valid in the weak scattering 

limit provided the effect of the field H is not too small. ~hen 
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f~ ~w °- 
In the absence of the magnetic field, the weak scattering treat- 

ment (Kohn and Luttinger 1957) gives fd~w "2" 

These different dependences reflect the different mechanisms 

which limit the momentum acquired by the electrons under the influence 

of the electric field: when H = 0 the scattering is entirely respon- 

sible; if there is a magnetic f~eld perpendicular to the electric 

field the electrons execute closed orbits under the influence of the 

Lorentz force and this mechanism dominates in the weak-scattering 

limit. This is the physical justification of the "high field" 

equation (2.16). It indicates that this equation, and similar ones 

representing successive orders in a perturbation development in powers 

of ~w,provides a basis for evaluating the transverse magneto conduct- 

ance in high fields. 

We concern ourselves here with the development of a method which 

can correctly include the zero field limit. Such a method must take 

into account the vanishing of~dd,~ndd,~dnd as the field goes to 

zero. This can be accomplished by ordering (2.13) and (2.14) not 

just with respect to ~w, but also with respect to a parameter ~H 

measuring the size of the field. We assume that each of A w and 

#H are small compared to I but not in relationship to each other. 

The limiting process ~H g~l is the extra condition referred to earlier 

We define ~H bY~c = ~ when ~ is the smallest ~w- independent 

energy typical of the system. The possible energies are the Fermi 

energy~ , the thermal energy kBT and e.g., an energy @s~2/(2ma 2) 

associated with the range a of the potential of a single scatterer. 

The energy ~[~ is ~w- dependent. 

(2.13), (2.14) are to be evaluated in the limit 

(2.1s) 
The integral operators ~dd, ~dnd, ~ndd, ~dd can be shown to go 

linearly to zero with the field; that is, they are of order ~H 2. 

The other integral integral operators and the inhomogeneous terms 

are all of order ~H°: 

~ - d ~  ~ ' ~ , l ~ ' ~  -,- ~ 4,1 
~'~d, ~'% ,~d=~ ~ ~ ~ 

(2.19) 
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Using (2.19), it is now possible to deduce from (2.13), (2.1~) 

the leading order dependences of fd' fnd on ~w' ~s' ~ H in the limit 

(2.18). Eliminating fnd and discarding all but the leading order 

terms in the resulting coefficient of fd and in the inhomogeneous 

term gives: 

(2.20) 

In (2.20),  the order of the operator appl ied to fd is  j 2  . . .  + 
8 

... ~H 2 + ...~w 2. C d is of order I. 

We can now consider three possibilities for the relative order 

of ~w' ~H : 

(i) ~w2~ ~H 2 (Z~I). Then fd~I/~H 2. In this scheme the 

lowest order equation contains no scattering terms. The scattering 

can be introduced by a perturbation development in (~w/~H). This 

is the high field approach already mentioned, but here it contains 

the additional restriction ~HL< I. 

(ii) ~H2~ ~w2~ I. Then fd ~ i/[~2+ ~s 2] and the lowest 

order equation does not contain the field. This is introduced as 

a perturbation (expansion in powers of ~H / ~w ). This method is 

limited to very weak fields (WcT ~ 1). 

(iii) The third possibility is the introduction of a limiting 

process with 

(2.21) 

Then the terms of leading order in both the field and the scattering 

are retained. This method should be valid for arbitrary ~cm. 

2.3. Boltzmann equation for arbitrary ~_ 

We adopt the third possibility above, imposing the limiting 

process (2.21). Then 

(2.22) 
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(consistent with the results of Kohn and Luttinger for the zero 

field case). Under the limiting process (2.21) equations (2.13) 

and (2.15) are to be replaced by 

^ ^ ~  "" ~1 

(2.23) 

(2.2~) 

where the circumflex indicates that the integral operators and 

inhomogeneous terms are to be evaluated to leading order in ~w a~d 

~H" The term i~s fnd is of higher order than the other terms in 

(2.2~) but it cannot be discarded as it later appears in a limiting 

form for a delta function. It is a simple matter to solve (2.2&) 

for fnd ~n terms of fd~ since ~ndd and ~n~are the zero field values 

of~ rnd, ~tndnd. The result is 

<tlwlO [[(r~') - -  [~e:~).l ~(t~ ' )  = . . . .  . 
E~ - ( C t  - ~t') (2.25) 

(2.2~) shows that ~nd ~w fd as long as there is no band overlap° 

The last term in (2°23) can be simply reduced by inserting 

(2.25) for fnd and recognizing the limiting form for a delta-function: 

-r.,)'~,~ f . .  = 2,-,~ Z I < t lw l  t , ) l '  [t:(t,, ~,~-I: ~:t;~j] s( '~t , -~,J.  
~' (2.26) 

Using (2.26), equation (2.23) becomes an equation for fd alone. 

The inhomegeneous term C d is the zero field limit of C d and reduces to 

J% 

-- 914 (2.27) 

where 

(2.28) 

The integral operator ~d d is the part of ~dd linear in the magnetic 

field. It turns out that ~dd consists of the linear term only. 

This is most easily seen by using the diagonal par~, ~-dd, of (2.11) 

and performing partial integrations to take derivatives from ~(~-~")o 

After the partial integrations the phase factors exp(i E ~ X - ...) 
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become unity and the terms of order H °, H I , H 2 can be separated. 

The terms of order H °, H 2 vanish, leaving 

(2.29) 
A 

Inserting this for ~dd and using properties of Bloch state matrix 

elements yields 

7__ ++,t(t~l  r, ~,J+'~(t, ~ t'l = -~+-~ ~ L  " _~+ ) . ~  C.(t,~) 
t, (2.~o) 

where 

~ = ~-~ ~_2~ 

- (2.31) 

The equation obtained by inserting the detailed forms o£ the 

kernels and inhomogeneous term into (2.23) contains, in the collision 

term (2.26), the square modulus of the matrix element ~ ~ W I~i ) of 

the interaction of an electron with all impurities. A similar form 

occurs in treatments o£ the zero field equation. The usual method 

of reducing this is as follows. We have 

N 

11. ~ 
(2.32) 

where the r~ are the locations of the impurity ~entres, assumed 

uncorrelated and always to be situated at a lattice site, and 

(2.33) 

u~ is the periodic part of the Bloch function ~g~x). The sum 7- 
k I 

in the collision term may be broken up into regions R of momentum 

space so small that the only term that varies appreciably in this 

region is I(~WILI~2. It may then be proved (Kohn and Luttinger 

1957)) that ~ ~WI{~I 2 may be replaced by its average 
nR 

over all the different distributions of the impurities, 
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provided that N is large. (The same is not true for l<elwl~>12.) 
This average is shown to be IV|elI2N/~. Since the transition prob- 

ability of an electron going from state ~to gl is~ to second order 

in the scattering, just 

the collision term can be written in its usual form 

(2.34) 

~4 (2.35) 

Recognizing that for the physically interesting rates at which the 

electric field could be applied s is very much less than the inverse 

of the relaxation time, the term i~s f(t;£) in (2.23) may be discarded, 

and the final equation is obtained: 

This is the usual Boltzmann equation Jones and Zener 1934, Peierls 

1931, 1932. 

The current is determined by inserting into (I.17) ~T in terms 

of f. Assuming non-overlapping bands (c.f. (2.25)), the result takes 

the familiar form 

v (2.57) 

In both (2.36) and (2.37) the meaning of f(t;~) is much less obvious 

than is usually suggested. 

2.4. Corrections 

A detailed investigation of corrections to (2.56) confirms that 

the result does not depend on ~c~ being small. 

The first corrections of higher order in ~w are similar to those 

met in the problem of conduction in zero field and can be dealt with 

by the arguments developed for that case. Such corrections arise 

from the term~ndnd fnd in (2.14) which gives an additional term in 

(2.24). Iterating the resulting equation gives 
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= 

(2.~8) 
where ~ ~ ~1 . The first term (col. (2.2~)) was included in the deriv- 

ation of the Boltzmann equation. The leading correction is one order 

of Aw smaller but since it is a sum over many terms it is not obvious 

that it really can be neglected. If~ in the leading correction, we 

break up the sumS_ into small regions ~ of momentum space and perform 
k I 

the averaging procedure presented in I over all distributions of impur- 

ities, we may then replace ~ ~LIWI~I><~II Wl~q~ by its ensemble 
k I in R 

average. This average has a form reflecting the overall homogeneity 

of the system: 

(2.39) 

This is the "diagonal singularity" property exploited by Van Hove 

(1955) in the derivation of a zero field transport equation. In our 

derivation it must be used to take care of the troublesome corrections 

of higher order in ~w" In the limit of an infinite system (2.39) be- 

comes exact and then in (2.38) the first correction contributes only 

for k = k'. In the case of a single band~ ~ ~ E I implies k ~ k I and 

the first correction term disappears. More generally £ i I l and k = k' 

are possible together only if ~ ~ V j and the first correction terms 

can again be shown to be small. The properties of the scattering 

potential ensure that the same is true for all higher iterations and 

for correction terms of higher order in ~w in general. Such correct- 

ions are small provided I/r Ca ~ (c.f. Chester and Thellung 1959, for 

the zero field case). 

Corrections from terms of higher order in ~H could arise from 

the field-dependence of the integral operatorsZJ'. But because the 

perturbing potential is diagonal in coordinate representation it may 

be shown that 

= L J -  , (2.~0) 
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i.e. there are no magnetic field-dependent corrections to~ c. Simil- 
~d arly (c.f. (2.29)) there are no corrections to ~ d. The principal 

field-dependent corrections arise from the other integral operators 

~, from the inhomogeneous term Cd, and from higher order terms in the 

iteration of (2.13), (2.1&). Such corrections may be shown to be 

small provided 

(2.41) 

where the right hand side is the smallest ~w-independent energy typical 

of the system. 

Among the effects of higher order corrections are 

(i) Quantum effects occurring when ~w approaches kBT. These 

show up in particular in modifications of the inhomogeneous term 

(2.27). For the case of free electrons obeying Boltzmann statistics 

the modification due to the field is obtained by replacing in (2.27) 

f°(k;k) by 

(2.~2) 

where ~ = I/(kBT) , p~ ~c~ = tanh p~c,~ ~c ~ = s i n h ~ U J c  (Sondheimer 

and Wilson, 1951). For the degenerate case the corresponding (more 

complicated) replacement gives rise to the Schubnikov-de Haas oscillat- 

ions in the conductivity. These oscillations have period e~/(mc~r), 

where r is an integer, and appear when~c ~kBT, ~/~. 

(ii) Extreme quantum limit effects occuring in the same way as 

(i), when~ approaches ~ . 

(iii) Relaxation of the strict energy conservation in (2.26) due 

to decay of the intermediate states. 

(iv) Replacement of V~ in (2.3#) by a t-matrix element giving 

the complete effect of a sing±e ~ scatterer (in zero field). This is 

a desirable resummation to make since scattering potentials are not 

in general weak, and the weak scattering assumptio~ would be better 

replaced by the assumption of low concentration of scatterers. 

(v) Effects associated with the curvature of the electron traj- 

ectory during scattering~ when ~c approaches ~s" 

Although we have arrived at a static (also linearised) equation 

(2.36), the effect of an electric field oscillating with frequency 

can be treated just as easily by replacing s by s-i~ throughout. 

~2So ]H 2~ W2~ 2 ~ 2  ~ 1  then gives the Writing w = the ordering ~ ~ s 

usual equation in which (2.36) is generalised by the addition of a 
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term ~f(~;{) on the left hand side. Such an equation can handle 

cyclotron resonance and other non-static effects. 

III. SOLUTION OF THE BO~TZMANN EQUATION 

3.1. Isotro~ic s$stems 

We have several times used the term relaxation time. Just as 

in the zero field case (Peierls 1955) a precise meaning to the term 

can be given for isotropic systems with elastic scattering in which 

the transition probability'~kkl 
depends only on the angle ~ between ~ and ~I" (We omit band labels 

for simplicity). 

For this case the Boltzmann equation (2.~6) can be solved by 

e~panding f(~,~) in spherical harmonies: 

~(,_,~I :T_ n~ (~.)y,. (nl. 
e~ (3.I) 

here denotes the spherical polar angles (~,~) specify'Lng the direct 

ion of k. The polar axis has been taken along the direction of the 

magnetic field. If (~i,~i) similarly defines the direction of kl, 

and d~ is a corresponding element of solid angle~ the collision 

term (2.35) can be reduced as follows: 

kt 
I 

(~.2) 
where 

'- = [~, [,- P, (~se) .1 ~(e~. (3.3) 

~(~) is the differential scattering probability and ~ is the (zero 

field) relaxation time associated with the rate of change, due to 

collisions, of the part of f proportional to Y~m" 

Similarly, because H.k^~/~k = H @/~ t h e  term (2.30) giving the 

rate of change of f due to the magnetic field can be written 

where 

hc _ e~ (3 .¢) 

~ c  ~ (3.5) 
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If ~£denotes the polar angles (~,~£) determining the direction of 

the electric field (with @~ again measured from the magnetic field 

direction) the inhomogeneous term in (2.36) is 

4 

"~ - 9~_ ,~,=_~, (3.6) 

where N(Ek) is a coefficient independent of the magnetic field: 

9E~ (3,7) 

The Boltzmann equation therefore gives 
! 

= h, (38) 

This determines nLm for all (~,m) except (0,0). nee can be shown 

to be zero if some ine]astic collisions are allowed for. The only 

non-zero n~m are those with ~=I and m=O or~l. The usual zero field 

lifetime [I appears but Jt is now combined for m =~I, with the term 

~ e  due to the field. 

For the particular ("longitudinal") case where ~//~, only the 

term with m' =0 occurs on the right hand side of (3.8) and the effect 

of the magnetic field completely disappears. This is the well known 

result that isotropic systems have no longitudinal magneto resistance. 

For general orientations the component of current in the direction 

specified by the polar angles ~: (@j,~j) is obtained by inserting f~m 

into (2.37): 

where 

c, (e) 
(3.1o) 

and 9 Z/~E is the density of states in energy. 

If both ~ and ~ are perpendicular to H (9j~/2)~ the sum over m 

reduces to 

(3.11) 
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where ~H is the "Hall angle" given by 

(3.12) 

In metals the factor ~fo/~E in (3.10) fixes all the energies in (3.9) 

at the fermi energy~. The average current is therefore a maximum 

in the direction making an angle ~H(~) with the direction orE_. The 

ratio of this maximum current to the component ~ cos ~H of~_ in the 

same direction is independent of H~ which is the statement of no 

transverse magneto-resistance for an isotropic system with one type 

of carrier. The ratio of the maximum current to the component of 

perpendicular to it (and to ~) is (RH) -~l where R is the Hall coefficient 

R gives a measure of the density N of conduction electrons. For the 

case under consideration it is given by 

I 

F~ (3.13) 

where ~ is the zero field conductivity of the system. 

The sl~ghtly more complicated case where two different isotropic 

bands each contribute a term of the form (3.9) to the conduction current 

gives rise to a non-vanishing trans-verse magneto-resistance, but the 

longitudinal magneto-resistance remains zero. The resulting trans - 

verse magneto-resistance (the relative increase in the resistivity 

for conduction perpendicular to ~) is initially proportional to H 2 

but except in special cases saturates when the field is such that 

~c~l for each band. For particular relation-ships between the 

parameters of the bands, the transverse magneto-resistance can remain 

zero (equa~ mebilities) or fail to saturate (equal and opposite Hall 

coefficients). 

3.2 Anisotropic Ssstems 

The fact that such simple (single band) systems as the alkali 

metals show magneto-resistance makes it clear that the effects of 

anisotropy cannot be neglected even for such cases. 

In the case of a single band, f is completely specified by the 

three components of ~; or equivalently (choosing the z-axis in the 

direction of H) by kz, E k and a third parameter ~ labelling the 

position on the curve (the classical phase space trajectory) defined 

by E = const., k = const. 
Z 
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If dk// is an element of arc length along the curve and vA is the 

component of velocity (i.e. of grad Ek) Perpendicular to the curve, 

a convenient choice of ~ is the phase variable 

where 

o (  _ 
zrl  c 

(3.1~) 

c ~ ~k. c OS 

(3.15) 

T is the time taken to go around the curve, here considered closed 

and of area S, under the influence of the magnetic field alone; ~ is 

a dimensionless measure of the time since a fixed point on the class- 

ical orbit was passed, and increases by 2~ for each complete orbit. 

Then 

c - _ " I "  ~ 
(3.1~) 

We write the collision term (2.35) as (i/~)W[f~, where r is some aver- 

age time between collisions introduced to make W[f~ d~mensionless and 

[W~ ~ I. Putting ~ =-an ~'~, the Boltzmannequation (2.36) becomes: 

- - ~g ~ (3.17) 
where ~ = T/(2~). Except in a special case to be considered later, 

l/r is essentially ~c ~. For metals, the energy E has to be the fermi 

energy because of the factor 9f°/~E. Using (2.37) the conductivity 

tensor is 

o'~.--e~-~Hznc IJk~IJ~'~ d~T~:i~J" 
(3.1s) 

where i and j denote particular components of v and ~. 
m 

Though the parametrization introduced above provides a convenient 

framework in which to analyse anisotropic systems, the equation (3.17) 

is st~ll extremely difficult to solve except in high and low field limit 

limits. For low fields an expansion in powers of (I/~) leads, in 

general, to a magneto resistance proportional to H 2. 

For high fields (u~cr>>l) an expansion in inverse powers of UJcr 

is required. Since this reveals some interesting features we shall 

investigate this limit in somewhat greater detail, followi~g Lifshitz 
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and co-workers (Tifshitz, Azbel, and Kaganov 19~7; Lifshitz and Pesh 

ehanskii 1959, 1960). 

Since ~ and v are each periodic in ~, they may be expanded in 

Fourier series: 

~=.~ (3.20) 

~o has only a z-component. 

The Boltzmann equation then becomes 

(3.21) 

The general solution of this equation depends on a knowledge of the 

Fourier components Wnn , o£ the integral operator W. The features 

which we now wish to emphasise are not critically dependent on the 

form of W and so for simplicity we make the collision time assumption 

W = I. It should however be remarked that, for anisotropic systems, 

no justification can be given for such an assumption. With W = i 

~ -_ ~r~ ~" ~-. 
__ -- ~ ~+~ 

(3.22) 

This yields the conductivity: 

JJ 
~ ~ = ' "  - ( ~ / r )  ~ ~-I  

(3.23) 

In the limit [~< I, this gives 
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( ] _ ) 2  1 1 
~c 7 Wc~ Wc1~ 

Wc1~ w-~ 

1 . I 

UCI~ I~ c 
(3.24) 

The entries hare denote only the asymptotic dependence on the field 

and are not iutended to suggest that the coefficients multiplying 

these powers are all the same. The corresponding resistivity is 

41 i ii Wc~ 

I =. q--I ~¢ 4 4 

i I I • 

(3.25) 

The constant diagonal matrix elements~ (in general different from 

the zero field resistivities and from each other) indicate saturation 

of the transverse and longitudinal magneto resistance in high fields. 

This behaviour has been verified almost without exception for 

the longitudinal magnetoresistance of metals, but it is not always 

observed for the transverse case. P01y-crystalline samples of many 

comparatively simple metals (Au, Cu, Ag, Sn, ...) show a transverse 

magneto resistance linear at high fields. This behaviour was for 

many years unexplained. A clue to its origin is provided by the 

complicated angular dependences shown in the magneto resistance of 

single crystals of the same metals: for some directions of the crystal 

axes with respect to the magnetic field a saturating high field be- 

haviour is observed, and for others a quadratic dependence is seen up 

to the highest fields used (Alekseevskii and Gaidukov 1959). This 

results from the character of the k-space constant energy surface of 

such a metal. Its Fermi surface extends throughout k-space, typic- 

ally more like the surfaces of intersecting undulating cylinders than 

of separaUe distorted spheres. If the axes of such a cylinder makes 

an angle ½N-~ with the field direction z, the intersection 
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of the surface with the plane k z = const, becomes a very extended 

ellipse for k small. The period of rotation T is then typically of 

order 2~/ (~c e) and 

(3.26) 

The expansion in powers of ~ is not permissible when 

9 ~ ---- mm I. 
l~J¢ "I: 

(3.27) 

Instead a partial expansion of the type 

~" W,. "r. We ' [ :  e"  
(3.28) 

may be used. In the limit (3.27) the resulting contribution of the 

extended orbits to the resistivity is 

ez~( '-k-)z 

(3.29) 

where ~ is the angle made by the current direction with the major 

axis of the "elliptical" orbit. Thus, as the direction 0=0 is 

approached there appears a quadratic rise of the transverse resistiv. 

ity with H. The extended orbits do not affect the longitudinal res. 

istivity (~= ~/2) in this way. 

Averaging (3.29) over angles in a range ~@ such that 

| ~e~|~Cwc~) gives an average resistivity 

(3. !i~ ) 

(Lifshitz and Peschanskii 1959, 1960, Ziman 1958). This is thought 
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to be the basis of the linear dependence on H of the transverse mag- 

neto resistance of polycrystalline specimens, where the averaging 

over angles is associated with the different orientations of the 

crystallites. 

It is not obvious that averaging the resistivity in such a 

simple way is adequate since in practice the current in a polycrystal 

will follow complicated leakage paths. A~ improved though still app- 

roximate treatment can be given, based on an "effective medium" method 

and similar in spirit to the coherent potential approximation used in 

the theory of disordered electronic, lattice, and spin systems. The 

method is to consider a single crystallite, most simply taken to be a 

sphere, in an effective homogeneous medium approximating in some sense 

the properties of the remaining orystallites. With this effective 

medium is associated a conductivity tensor ~rm(H) , later to be determined 

by a self -consistency condition. The solution is then obtained for 

the current flow in the system consisting of the single crystallite 

(whose conductivity tensor is known, c.f. (3.23)) inside the homo- 

geneous medium. The relationship of the current inside the crystal- 

lite to the external field can be represented by a conductivity tensor 

(0,~; H; O-m(H)) depending on the directions @,~ of the crystallite 

axes as well as on the field H and the conductivity ~. The self- 

consistency condition determining ~ is then 

I ~ e ae a~ ~-~ IT" $I111 " - -  • 

I (3.3l) 

The polycrystalline specimen is then assumed to have conductivity 

tensor r m- 

Such a procedure gives an effective high field transverse 

resistivity 

f~  o( H ~t~' 
(3.32) 

(Stachowiak, to be published). This approach includes some of the 

effects emitted in the averaging used to obtain (3.300. But the prob- 

lem of conduction in polycrystalline materials awaits a more satisfact- 

ory treatment. 
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IV, QUANTUM EFFECTS 

Up to now we have completely neglected effects due to quantis- 

ation of the electron states. It is difficult to include them within 

a formalism which ~oes over conveniently to the low field limit. If 

we are prepared to lose sight of that limit and also to specialise to 

the case of free electrons, the use of Landau state representation 

suggests itself (Argyres 1958a.b). 

4.1. Landau representation 

The Landau states are eigenfunctions @nk for a single electron 

in a uniform magnetic field: 

(~.l) 

The gaug~ A: (O,Hx,O) has here been used, and the system has been 

taken to be infinite in the x-direction and of lengths Ly,L z in the 

remaining directions. ~ is the Hermite function of order n with 

= k /~. The associated energy eigenvalue argument @2(X-Xo) where x ° Y 

is 

2 ~  ( 4 - . 2 )  

We now consider whether a generalised Boltzmann equation can 

be derived by rephrasing the development of section II in Landau 

representation. 

The linearised equation (2.6) for the density matrix then 

takes the form 

(:~.3) 

where ~ denotes nk and, for example, f@(, denotes ~ ~ f~g, d3x._ The 

form of the matrix element W~t~ of the scattering potential and of 
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the inhemogeneous term are crucial in what follows. 

(4.3) may be separated into diagonal and non-diagonal components 

as in (2.13), (2.14) but now in Landau representation. With subscript~ 

D, ND representing respectively diagonality and non-diagonality in this 

representation the separat@d equations are formally 

; l~ s ~Co + C o  --- u,'-I-'>,,~> ~'~,i> 

+ ~, . i - j  ,,,o I:,,,~> i, ti s ~e,~ii + C~,D "IA ' '~ °  ,~l> 

(~.~) 

(~.~) 

The behaviour of the inhomogeneous terms in the weak coupling 

limit depends on the relative orientation of the fields ~ and H: 

for ~#H (longitudinal case) 

(4.6) 

while for EL~ (transverse case) 

C - o  ,',- ~ - 
(4.7) 

This is because C involves Ec~ (2.9); the longitudinal component 

of ~ is diagonal in the Landau representation, while the transverse 

components only link Landau states whose principal quantum numbers 

n differ by +I. The diagonal components of f can only be expected 

to play a dominant role in the weak coupling limit for the longitudinal 

case. For the transverse case the matrix elements of f between states 

differing by +I will be most important. 

4.2. LONGITUDINAL CASE 

We consider first the longitudinal case [~. The ~w ordering 
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is used in the manner employed earlier (without the need for a sim- 

ultaneous ~H ordering, since terms like ~DD do not appear). The 

term~NDND fND in (4.5) is discarded, being of higher order in ~w" 

Solving formally for fND in terms of fD and inserting into (4.4) 

then gives an equation for fD" The equation contains a complicated 

inhomogeneous term of which the dominant part in the weak coupling 

limit is just CD: 

(4.8) 

Writing the explicit forms for the integral operators and for 

C D this becomes 

4 Iw.,,l"-[f.-M,,] o 
9k~ ~ t" (z~.9) 

where 

I 

(~.lO) 

The diagonal singularity assumption, corresponding to (2.39) but now 

in Landau representation, is now needed for two purposes. One is to 

reduce the collision term in (4.9) to a form involving the transition 

probability for scattering by separate impurities (c.f. (2.32)-(2.35)) 

The second is to make the corrections to the Boltzmann equation (4.9) 

small. These corrections come solely from the terms of higher order 

in ~w' the field having been completely included. By an argument 

completely anal~gous to that used in discussing (2.38) these terms 

are small provided the diagonal singularity property holds in Landau 

representation. 

By averaging over all distributions of impurities this can be 

shown to be the case for scatterers whose range is very much less 

than the Larmor radius G -~. For this case, the quantum transport 

equation (4.9) can be used to discuss the longitudinal effects. 

4.3 Transverse case 

For the transverse case ~ it becomes appropriate to 
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distinguish the m~t-r@T elements of C and of f between states nk and 

n'~'with ~=k;and n=n'Zl. Suoh a matrix element we denote by s~bscript 

, any other matrix elements being denoted by NA. Separating 

equation (A.3) in this way lot the case ~ leads to 

(~.ii) 

(~.12) 

0 

Now C~ ~w' while GN~ ~ ~w I. However CA, ONA and ~& each vanish 

with H and it beeomes nee~smary to take note of this in order to in- 

clude all terms which may dominate when H is small as well as large. 

For this reason we introduce a nominal A H parametrization, but will 

not limit ourselves to any small H re,i me though we weuld like to be 

able to include it. Then 

C~, ,~ ')'~1 'o C , ~  ,~- ~,w ~ 1  . (4.13) 

With the weak scattering assmmption, the term in (%.12) invol~ing 

~N& can be discarded; fIT~ is then found in terms of fA" Inserting 

the result into (4.11) and extmacting the dominant (weak coupling) 

part of the inhomogeneous term gives the equation for fA: 

I~& 
(~.I~) 
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¢ llzr.o, re ] 
u -, 

(4.15) 

where [=n~, ~'=n'~ ! with ~' =~ and n I =nZl. 
The validity ef the development leading to (4.15) requires a 

diagonal singularity in the gene~alised form 

4  lwDwlt' > 
(4.16) 

Here D is a function of Me, or a component of ~ multiplied by ~unctions 

ef ~o" As in the longitudinal case, (4.16) can be verified for a 

random distribution ef scattereTs with range small compared to the 

La~or radius. (4.16) makes the correction term to (4.15) small, 

and also allows the ee!lision term to be rewritten in terms of trans- 

i%ien probabilities for scattering by separate impurities. 

(4.9) and (4.15) are the quantum transport equations for the 

eases {~ and £l[ respectively. They apply only to the free electron 

s~rstem wigh sufficiently short range scattering. 

4.4. Discussion 

(4.9) and (4.15) can be used to determine the currents and 

conductivi%y components using 

.-7" 

Jz is diagonal in the Laadzu representation, while jx,j ~ link states 

whose quantum numbers n differ by I. From (4.9), (.15) the diagonal 

matrix elements of f are generated by the longitudinal field ~z and 

the m~trix elements with n differing by 1 are generated by the trans- 

verse field ~x' ~y" Hence 
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-- -_ r ,  h o 

, IT" ) and ~-xx (= l~yy )  and ~zz can be discussed using (z~.9) w h i l e  ~y(=- ~u~ 

require the use of ($.15) only. 

For the partdcular case of zero range (delba-~mction) scat- 

te~ers, the equations are easy to solve since the linhed terms in the 

collision operators (e.g. the term in (4.9) involving f~,, ~,, as a factor) 

then wan~sh. For the longitudinal case the result for the ratio of 

the resistivity to its zero field value is 

(~.18) 

where ~o is the fermi energy in z~ro field and we have taken ~w c ~ to. 

A similar result is obtained for the transverse case (Argyres 1958a,b). 

The oscillating terms have a form similar to the Landau Peierls 

terms in the free electron diamagnetism, and have the same origin - 

the Landau levels passing through ~e Fermi level as their separation 

varies with magnetic field. This is a quantum effect omitted from 

the treatment ef Section II. For observation it is necessary that 

kBT and the collision broadening of the states should be small com- 

pared to their spacing, 

(~,18) and the corresponding result for the transverse case 

show no steady magneto-resistance, in agreement With the conclusions 

of 5.1 for isotrepic systems. For~ ~ (the quantum limit) further 

quantum effects occur (e.g. the suppression of the transverse current) 

associated with the condensation of all electrons into the n=O oscillat- 

or state. This sit~ation is enZy of academic interest for metals 

because of the high fermi energy but is experimentally attainable 

for semiconductors wTbh a Tow concentration of carriers. 

In Section II the possibility of treating high field transverse 

effects by expansion in powers oT ~w was mentioned. (~,15) is amen- 

~b~e to such a ~rea~ment because im t~e terms on the left hand side 

~he f~e~ors mu~tipT~ng f are respectively of order ~c and ~/~. The 

expansion in powers of ~w (acbuall~ in powers of I/(~c~)) is obtained 

by iteration, treating the second term on the left hand side of (4.15) 

as small, A more complete development of the 1/~c~) expansions for 
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the transverse case is obtained directly from (4.11), (4.12) Adams and 

Holstein (1959) or from a corresponding Kubo formula (Kubo, Hasegawa, 

and Hashitsume 1959) without the need for the diagonal singularity 

required for (4.15). It is clear that no suoh expansion method can 

be applied to the longitudinal equation (4.9) nor to the transverse 

equation generalised to deal with an oscillating electric field of 

frequency~=~c (cyclotron resonance). In each case the response to 

the electric field is limited solely by the scattering. 

The leading order term in the iteration of the (static) equation 

(4.15) gives the following contribution to the transverse current: 

(4,19) 

(jx+~jy is related to the ladder operator which takes a Landau state 

into the corresponding state with n increased by 1). 

(4.19) shows that to leading order in the 1/~c ~ expansion 

the Eall coefficient for the quantum case has the classical value 

1/(Ne c), and that the transverse conduction vanishes. The next 

order in the expansion gives non-vanishing contributions of order 

1/(~2 ) to all the transverse components of ~, all of which contain 

quantum effects. In this high field situation the migration along 

(~) is only made possible by the collisions. 

quantum transport equations (4.9), (4.15) and the I/(~c~ ) The 

expansions of the type discussed are in principle applicable to the 

more realistic case where the lattice is also present. The Landau 

states are then replaced by the wave functions of the electrons in 

the periodic lattice in the presence oT a magnetic field. The ap- 

proach is therefore in practice limited to systems in which the per- 

iodic potential can be included into an equivalent Hamiltonian (Blount 

1962), e.g. by the introduction of an effective mass. 

V. COLLISIONS BETWEEN CARRIERS 

In the zero field case collisions between free electrons 

have no effect on the current because in each such collision the total 

momentum is conserved. Electron collisions can however modify the 

effects of impurity or phonon scattering, or can by themselves give 
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rise to a resistance for electrons moving in a perfect lattice. 

It is of some importance to see how such statements have to 

be modified when a magnetic field is also included. 

We first consider the case of electrons interacting only with 

each other in the presence of a magnetic field. The same argument 

as in the field-free case clearly shows that the longitudinal res- 

istance is zero. For the transverse case it is not so obvious how 

the result without electron collisions, given by (4.19), will be 

changed. We shall show that the electron-electron interation does 

not alter those results. 

To discuss this we find it most convenient to use the Kubo 

formula (Kubo 1957) for the Ohmic conductivity: 

oo I~ 

o • (5.l) 

where 

< . . .  > = [ • 

(p .2 )  

and J is the total current operator. The Hamiltonian ~is 

,j 

~=~y ~ .,- V 
"= z .e"  .I;. + .,, 

(5.3) 

where 

(5'.~) 

is the current operator for the i th electron in the absence of inter- 

actions. The electron-electron interaction is 

~j (5.5) 
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Because U is a function only of coordinates, the total current is 

~-= Z j~ (5.6) 

Also, since the scatterings represented by U conserve total momentum, 

the commutator of U with J vanishes and the equation of motion of J 

is the same as when U = O. Hence the combinations 

evolve harmonically with frequency ~W = J eH/(mc): 
c 

Tz,l{ - +__oo~T,_ . 

It follows that 

o 19 

where 

However 

(5.7) 

(5.8) 

(5.9) 

(5.IO) 

(5.11) 



404 

and the commutator of J with J is a c-number: 
+ 

[T+, ] = -  
(5.12) 

These relations are together sufficient to determine the average on 

the right hand side of (5.9) with the result that 

~C 

(5.13) 

In a precisely similar way we find~x= ~y= 0 and the Hall coeffic- 

ient becomes 

"]-' 4 / 
R = = 

(5.1~) 

These results (c.f. (4.19) are independent of many body effects. 

They are also independent of statistics ~ there are no oscillations in 

the Hall coefficiQnt. All the above results can alternatively be ob- 

tained from the equation of motion for the density matrix of the many 

particle system. 

The time evolution (5.8) of J has been used by Kohn to sh~w 
+ 

that the electron-electron collisions-do not alter the cyclotron res- 

onance frequency of the system. We recover th~s result by inserting 

a factor exp(iwt) into the integrand of (5.1) to describe the oscillat- 

ions of the electric field. The first factor in (5.10) then becomes 

[.~(~Z~_)-i/~f~ )] which yields a sharp resonance at @= Zw. 
C 

If, in addition to the electron-electron collisions, scattering 

due to impurities or phonons is considered, the above development still 

applies for the high field behaviour (~c ~ m>l): the electron-electron 

interaction does not alter the high field Hall coefficient. 

It is not possible to dispose of many-body effects in the same 

way when a lattice is present, or when ~c ~ is not large. To the extent 

to which the low field equation (2.36) can be applied ~Wc~kBT , ~) the 

effectiveness of electron-electron collisions will be measured by a 
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collision frequency which is the same as in the zero field case. Then 

the usual arguments (Peierls 1955) based on the exclusion principle 

suggest that this collision frequency is of order 

g~ 
(5.15) 

and unimportant in most situations (Langer 1960, 1961, 1962a,b). At 

higher fields further effects, such as the modification by the fiel£ 

of screening by the electrons can occur (Horing 1969). 

VI. COLLISIONS WITH PHONONS 

In relatively pure materials the electron scattering is pred- 

ominantly by phonons, except at very low temperature. The collisions 

of the electrons with the phonons will drive the phonon system out of 

equilibrium unless phonon-phonon scattering is sufficiently frequent 

to maintain equilibrium. We shall later restrict our discussion to 

that case which applies for instance, at high temperatures. 

6.1. Transport equations with phonon scatterin G 

With only phonon scattering the interaction W of Section II 

(2.1) or Section IV is to be replaced by the electron-phonon interaction 

(6.1) 

where aq + is the creation operator for a phonon of wave vector q, 

and ~ is the electron coordinate. Co (2.2) has also now to include 

a phonon Hamiltonian. 

The formalism of Sections II and IV then applies except that 

in addition to the label L describing the "state" of an electron, we 

have to add a label N to describe the state of the phonon system. N 

is the set of quantum numbers Nq describing the excitation of the sep- 

arate modes. 

For illustration we consider the quantum case (Argyres 1958 

a,b). The system is then labelled by N,l where ~ is the Landau state 
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label nk. The linearised equation of motion for the density matrix 

is (c.f. (~-.~)) 

(E,c~-E,~,~,)<m 14: I ~'l'> + ~ I <'~tlve=l'l' I~'F'>(~"¢'t#i ~'t'> 
,~"r [ -<,~t l t : l~"e"? (~'l"l/I,I.pl, I Nt~'~ 

(6.2) 

EN( denotes the eigenvalue of the unperturbed Hamiltonian ~o for the 

eigenstate with N phonons, and the electron in state £ : 

I 

$ (6.3) 

In the limit o f  zero scattering the inhomogeneous term C is diagonal 

in the phonon labels and links eiecvron states n~, n'~ with ~=~' 

but with n-n'=O or ZI depending on whether ~# ~ or~. It becomes 

appropriate, as in Section IV to discuss two different types of diag- 

onality. In SectLon IV these were denoted by subscripts D, 

(n-n I = 0 or ZI respectively) applying to the longitudinal and trans- 

verse cases respectively. In the present extension of that work to 

electron phonon collisions diagonality also means no change in the 

phonon labels: 

D • < N t  I I ~ ' f > ,  w',~.~ ,J' v._' ,r' - _ . N ,  =k_. ,  = , , ,  ( ~ _ # _ ~ )  

L~ ,. /-. ~ !  1 I N ' t '> ,  ~, t l~ ~ '  , k'  , ,~'= - . 

(6.zO 

Consider for simplicity the iongitudinal case (~). We separate 

the equation (6.2) into diagonal and non-diagonal parts, and apply 

the ordering corresponding to weak electron phonon interaction; we 

then eliminate the nondiagonal components of f (neglecting for the 

moment the term~DND fND ). The resulting equation (c.f. (4.8)) is, 

in the weak coupling limit: 
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I <'~. I Vee~, !'~",~">1 '~ g (E:,~t - 6,,,'e") 

--  - ( N e l c l  ~ e > .  
(6.5) 

11 

The sum over N can be reduced immediately s~nee the matrix elements 

of VeLph are each sums over q of matrix elements involving the creation 
+ 

and annihilation operators aq , aq. These operators only link states 

in which N differs by ~I. In the collision term in (6.5) no inter- q 
ference between the phonons of different q's nor between emission and 

absorption processes then occurs. The contribution of the emission 

process to the collision term is for example: 

T" I~,1 ~ I < t l e  {t'~- Ie">l  ~ I ( . . . ~  ... I ~ ' l -  ~ ' + j > l ~  

-( ' . . . ,~.. .t l .C-I. . . , , , , . - .  ~> . 

(6.6) 

In order to average operators such as bhe current, depending only on 

the electron variables, we require only 

(6.7) 

We now assume That at a'Tl t lmes the Ta~t~ce vibrations are' in thermal 

equilibrium at absolute temperature T. Then there are no phase rel- 

atie~shlp~ between probability amplitudes of different states ]N~ 

and the probability of finding the lattice in any one of these states 

is 
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~(~)  = ~_ 
- ~, '  Ik~T" 

(6.~) 

It follows that 

<Z. NI,Cl e',~'> - <e.l-~; e'~ P('~] ;,,,, ,  
(6.9) 

Thus summing (6.5) over all N and denoting by q 
aq we finally obtain of aq 

the average value 

z:: [<~"~.~ I. c i ~" k+~ >-  <,~ I;I.~>]~..,, (~,,) 
I 

--{" 91(~ 

(6.1o) 

where 

_ I ~ ~ ' "  I,," I ' 

(6.li) 

This is the Boltzmann equation for the ~ongitudinal case (Argyres 

1958b). A similar generalisation of the procedure of ~-3 for the 

transverse case results in the weak-coupling equation for the element~ 

<nklf l~ k> wit~ n' =n~Z: 

( a ~ - e , . ~ ) Z , k ~ l , ' k >  + k Z .  [W.,.. (,.~),W,,..(~.~)] 4,~l~J,'O ~ "  

(6.12) 
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The validity of such a procedure again requires a diagonal 

singularity property of the type (4.16) but now to be possessed by 

V Wave vector conservation automatically provides a delta e~ph " 
function relating the wave vector labels of the Landau states but 

the required relationship between the quantum numbers n, n j only oc- 

curs in the situation in which the effective potential due to exchange 

of the phonon is short range compared to the Larmor radius. This 

occurs with, for example either 

(i) elastic acoustic phonon scattering with 

and (Argyres 1958b) 

or (ii) optical phonon scattering with ~q and ~q independent of 

q. (These are related to the well known conditions for effectively 

s-wave scattering in the zero field case.) 

If quantum effects are unimportant, the formalism of Section II 

can be applied in an analogous manner to the phonon scattering case. 

The required singularity property (c.f. (2.39)) is automatically pro- 

vided by the wave vector conservation, and the result is a Boltzmann 

equation analogous to (2.36) but with ~ I  replaced by the usual zero 

field phonon collision term. 

6.2. Magneto phonon resonance 

Magneto phonon resonance (Gurevich and Firsov 1961, Firsov and 

Gurevich 1962, Firsov et al. 1964) is one quantum effect which can 

occur when scattering is by optical phonons. The effect arises from 

an enhancement of the scattering when the phonon frequency is an integ 

ral multiple of the cyclotron frequency: 

This is because the density of Landau states is I/kz; 

(6.13) 

when ( 6 . 1 3 )  i s  

satisfied it is possible to satisfy the energy conservation delta- 

functions in (6.11) with ~n"-n~=N, and k z and kz+qz both zero thus 
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obtaining a large transition rate because of the large density of 

states factors. This results in a conductivity which oscillates 

as a function of H. (6.13) is the condition for maxima in the trans- 

verse conductivity at high fields and minima for the longitudinal 

conductivity. The above argument is incomplete for the longitudinal 

case because it relates to values of k z close to zero, which do not 

contribute appreciably to the longitudinal current. Other scattering, 

particularly by acoustic phonons can change the longitudinal minima 

into maxima (Gurevich and Firsov 1964, Kharus and Tsidilovskii 1971). 

The amplitude of the transverse conductivity calculated from 

(6.12) is divergent on resonance. A modification of the weak-coupling 

scheme to take account of the finite lifetime of intermediate states 

is required to calculate the on-resonance amplitude. This is not 

needed for the longitudinal case which is anyway finite because of 

the small k factors from the current matrix elements. 
z 

The broadening of the intermediate states is given by the imagin~ 

ary part of an appropriate self-energy. If the effect arises only 

from the optical phonons the self-energy associated with state nk is 

to leading order in the interaction 

(6.1~) 

(Palmer 1970). Since this is required on resonance, the broadening 

has also to be included in the intermediate states in (6.14), and the 

self-energy determined self-consistently (Palmer 1970), More usually 

the finite lifetime of the intermediate states is largely accounted 

for by other scattering mechanisms, including collision broadening 

(Barker 1970). 

The field at which the resonance should occur can be shifted from 

that given by (6.13) by self-energy effects (Palmer 1970, Nayakama 

1969). The real part of the self-energy (6.14) gives rise to a 

relative displacement of the two Landau levels involved, displacing 

the resonance to higher fields which are then given, instead of (6.13), 

by 
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If the two lowest levels (n=O, n+N=l) are involved, equation (6.15) 

for the field at which the shifted resonance is seen reduces to 

(6.i6) 

where ~ is the Frohlich coupling constant 

(6.17) 

giving a dimensionless measure of l~q~ 2 for polar modes. The shift 

given by (6.16) has been measured (Mears et al. 1968) and is satis- 

factorily accounted for by the theory. The shift is a polaron effect 

related to the polaron effective mass correction (Larsen 1970): the 

weak-coupling correction to the effective mass (in a magnetic field) 

given by the coefficient of kz2 in the expansion of (6.14). is 

VII. CONCLUDING REMARKS 

No discussion has been given here of a number of topics in magneto 

conductivity, of which we list the following 

(i) strong-coupling regimes 

(ii) non Ohmic effects 

(iii) derivation of coupled electron-phonon Boltzmann equations 

(iv] effect of electron interactions in the presence of a 

lattice, or other interactions 

(v) high field effects in the presence of a lattice. 

A great deal of work has been done on some of these (notably (i) in 

the low concentration regime, (iv) using e.g. the random phase approx- 

imation and (v) using effective Hamiltonian methods). But important 

aspects of them all are not completely understood (many of the diffic- 

culties are not special to the magnetic field case). Also some of 

the topics discussed (e.g. the derivation of quantum transport equat- 

ions) require less restrictive treatments. Meanwhile a great deal 

of experimental work is currently being done in the high field regime, 

particularly on high purity semiconductors, making the need for further 

theoretical advances all the more apparent. 



412 

REFERENCES 

Adams E.N. and Holstein T.D., 1959, J. Phys. Chem. Solids I0, 254. 

Alekseevskii N.E. and Gaidukov Yu.P., 1959, JETP ~, 383. 

Argyres P.N., 1958a, J.Phys. Chem. Solids ~. 19. 

Argyres P.N., 1958b, Phys. Rev. 109, lllS. 

Argyres P.N., and Adams E.N., 1956, Phys. Rev. lO~, 900 

Barker J.R., 1970, Phys. Lett. 33A, 516. 

Blount E.I., 1962, Phys. Rev. 126, 1636. 

Chester G.V., and Thel]ung A., 1959, Proc° Phys. Soc. 73, 745. 

Firsov Yu. A. and Gurevich V.L., 1962, JETP 14, 367. 

Firsov Yu. A., Gurevich V.L., Parfenev P.V. and Shalyt S.S., 
1964, Phys. Rev. Lett. 12, 660. 

Greenwood D.A., 1958, Prec. Phys. Soc. 71, 585. 

Gurevich V.L. and Firsov Yu.A., 1961, JETP 13, 137. 

Gurevich V.L. and Firsov Yu. A., 1964, JETP 20, 489. 

Horing N.J., 1969, Annals of Physics 54, 405. 

Jones H. and Zener C., 1934, Prec. Roy. Soc. A144, 101. 

Kharus G.I. and Tsidilovskii I.M., 1971, Soviet Phys. Semi conductors 
~, 603. 

Kohn W. and Luttinger J.M., 1957, Phys. Rev. 108, 590. 

Kubo R., 1957, J. Phys. Soc. Japan 12, 570. 

Kubo R., Hasegawa H., and Hashitsume N., 1959, J. l~hys. Soc. Japan 14, 
56. 

Langer, J.M., 1960, Phys. Rev. ]20, 714. 

Langer J.M., 1961, Phys. Rev. 224, 1003. 

Langer J.M., 1962a, Phys. Rev. 127, 5. 

Langer J.M., 1962b, Phys. Rev. 128, ll0. 

Larsen D.M., 1970, Prec. Int. Conf. Physics of Semiconductors, Boston, 
p. 145. 

Lifshitz I.M., Azbel M.la., Kaganov M.I., 1957, JETP ~, 41. 

Lifshitz I.M. and Peschanskii V.G., 1959, JETP ~, 875. 

Lifshitz I.M. and Peschanskii V.G., 1960, JETP l l, 137. 

Meats A.L., Stradling R.A., and Inall E.K., 1968, J. Phys. Cl, 821. 

Nayakama M., 1969, J. Phys. Soc. Japan 27, 636. 

Palmer R.J., 1970, D.Phil. Thesis (Oxford Univ.) 

Peierls R.E., 1931, Ann. Physik 10, 97. 

Peierls R.E., 1932, Ergebn. D. Exakt. Naturw. ll, 264. 

Peierls R.E., 1995, quantum Theory of Solids (University Press-Oxford) 

Sondheimer E.H. and Wilson A. H., 1951, Prec. Roy. Soc. A210, 17~. 

Stinchcombe R.B., 1961, Prec. Phys. Soc. 78, 275. 

Van Hove L., 1955, Physica 21, 517. 

Wigner E., 1932, Phys. Rev. 40~ 749. 
Ziman J.M., 1958, P h i l .  Mag.~]~, 1117. 



TRANSPORT PROPERTIES IN GASES IN THE PRESENCE 

OF EXTERNAL FIELDS 

J. J. M. Beenakker 

Kamerlingh Onnes Laboratorium 
University of Leiden, Netherland 

Io 

II. 

III. 

IV. 

V. 

INTRODUCTION 

THE NON-EQUILIBRIUM POLARIZATIONS 

The thermal conductivity 
The shear viscosity 

THE LIMITATION OF THE ONE MOMENT DESCRIPTION 

THE EFFECTIVE CROSS SECTIONS AND THEIR BEHAVIOUR 

FIELD EFFECTS IN THE RAREFIED GAS REGIME 

The transverse viscomagnetic heat flux 

REFERENCES 



414 

I. INTRODUCTION 

We will start a discussion of the influence of an external field 

on the transport properties of gases with a short survey of its his- 

tory. For this we will have to go back to 1930, when Senftleben ~l] 

discovered that the thermal conductivity of gaseous 02 is influenced 

by a magnetic field. Further studies (Engelhard-Sack) showed that 

the viscosity was also affected. The fact that under the influence 

of the field NO behaved in the same way as 02 suggested that it 

was a property of paramagnetic gases. This phenomenon became known 

as the Senftleben effect. It was extensively studied for nearly a 

decade. The results of this work may be summarized in the following 

In the presence of a magnetic rield~ H, the transport co- 

efficients decrease slightly (0.5 - 1%)° 

(ii The effect is even in H. 

(iii At constant temperature it depends only on the ratio H 
P 

with p the gas pressure. 

(iv In mixtures with nonparamagnetic gases the effect is pro- 

portional to the concentration. 

These results led Gorier ~2] to a qualitative interpretation based on 

the change in the mean-free-path of an 0 2 molecule caused by the 

magnetic field. This idea was elaborated more quantitatively by Zernike 

and Van Lier (1939) ~5] • They assumed, following Gorter, that a 

quickly rotating paramagnetic diatomie molecule can be imagined as a 

disc with 8 magnetic moment, ~ , perpendicular to this disc, i.e. 

in the direction of the axis of rotation. The cross-section, ~ , 

depends on the orientation of the axis with respect to the direction 

of motion. Normally the direction of the axis of rotation is con- 

served between two collisions and the mean-free-path expression for~ 

say, the viscosity will become 

~ n m ~  with r'~(~) , 

where the averaging is perfol~ned over all possible orientations of 

the molecules. If ~" is of the type ~ (i + ~72 cos @) , one sees 

immediately that the nonsphericity contribution to ~ is of the order 

~2. In the presence of a magnetic field, however, the situation is 

different. The magnetic moment and~ therefore, the axis of rotation 

way: 

(i 
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Fig. i. Schematic diagram of the behaviour of the 
thermal Conductivity of a paramagnetic gas 
in a magnetic field. 

coupled to it will, in this classical picture, precess around the 

field direction with the Larmor angular-frequency ~p. The precession 

gives rise to a periodic change of the collision cross-section of the 

molecule during its free flight. So one is no longer permitted to 

treat the axis as fixed in direction during this time. As a result, 

one has, in the mean-free-path picture, first to average the cross- 

sec~on Of every molecule over the precession and subsequently one 

must average over all molecules, i.e. ~(~/~pr~) ~LtM°L This 
2 extra averaging introduces changes in the term in ~ , resulting in 

e decreese in the transport property. It is directly related to the 

fact that (I/~)~(4£~ e.g. consider two groups of molecules with 

i ). The number of (~ + x) and (~- x). Then ~ • @ ( 1  + ~- x 

precessions between two successive collisions determines the extent 

of this averaging and it is clear that the effect will show satura- 

tion when the averaging is complete. Since the Larmor frequency is 
1 

proportional to ~H and the time between two collisions ~f is ~ 

the degree of averaging will be described by the quantity ~p~f 
H 

and is a function of the ratio -- only. Saturation takes place when 
P 

~ ~f~2 1. The linear concentration dependence follows also immediate- 

ly from this picture. The mean free path picture suffers, however, 

from 811 the shortcomings of the type of approach and, although it 

remains attractive for its simplicity, it is by now mainly of histori- 

cal interest. It was not until 1961 that Kagan and Maksimov ~4~ 

pointed out how one could encompass the Senftleben effect in s Chapman. 
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Enskog type of theory. From Gorter 's picture it is clear that to do 

so one has, in solving the Boltzmann eguation, to retain explicitly 

the orientation of the molecules. That for non-spherical molecules 

such a solution is possible was already realized, as early as in 1922, 

by Pidduck ~5] • Chapman and Cowling mention this possibility ex- 

plicitly in their book when they treat the transport properties of 

rough sphere molecules. The nonequilibrium distribution function 

can depend vectorially on both the molecular velocity ~ and the 

molecular internal angular momentum ~. They neglected, however, the 

possible importance of the resulting anisotropy of f in J. In this 

they were followed by many authors. The reason is that one saw no 

physical reason for polarization of nonspherical molecules as long 

as the gas was not so dense that the head and the tail of a molecule 

felt a different force. This last phenomenon is well known, for ex- 

ample, in systems containing macromolecules and gives rise there to 

such properties as flow-birefringence. Anisotropy in ~ can be im- 

portant because the collision cross-section is angle-dependent and so 

the free lifetime of a molecule depends on the orientation of J with 

respect to ~, resulting in the possibility of polarization by a 

preferential absorption-like mechanism. Although its effect on the 

transport properties is so small that it usually gets lost in the 

background of the other contributions, it manifests itself directly 

in the case of the field effect. As Gorter pointed out, in a magnetic 

field the molecular axis of rotation remains no longer fixed in direc- 

tion between collisions but precesses around the field direction, 

consequantly the angular momentum polarization produced by the col- 

lisions is partially destroyed in the time between collisions. The 

destruction of the angular momentum polarization will couple back on 

the anisotropy of the distribution function in velocity space and 

hence change the transport coefficients. Loosely speaking one 

measures directly the effect of the angular momentum polarization on 

the transport phenomena, or, more exactly, one measures the effect of 

going over from a distribution function of the form: f (~, i) to a 

situation where the form is f(~, JH ). 

Note: the polarization is only partially destroyed as JH re- 

mains a constant under the precession of ~ over a cone. Total des- 

truction is possible in an NMR configuration, where the combination 

of the static field and a crossed oscillating field will induce m 

transitions (see Borman and Gorelik [6] ). 

For quite a long time (this includes the paper by Kagan and 

Maksimov) the field effect was considered to be an exclusive property 
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of psramagnetic gases. Starting from Gorter's simple mean free path 

picture, Beenakker, Scoles, Knaap and Jonkman [4] showed in 1962 that 

this limitation is not real and that the magnetic effects are a gener- 

al property of rotating molecules. They confirmed their ideas by pre- 

senting measurements of the effect of a magnetic field on the vis- 

cosity of N 2 and CO. 

To explain this one has to realize that the field effect is essen 

tially just the result of the destruction of the angular momentum 

polarization, and that its magnitude at saturation is not determined 

by the magnetic field but by the amount of polarization as caused by 

the nonspherieal part of the molecular interaction. Consequently if 

one is able to destroy the polarization in N2, one expects a change 

in the transport coefficients roughly equal to the one observed by 

Senftleben for 02 . So all one needs is a handle on the polarization. 

Now it is well known that every rotating molecule has a small but non- 

zero magnetic moment caused by its rotation. The exact theory of this 

magnetism is rather complicated, the magnetic moment arises from the 

fact that the electrons and the nuclei in a rotating molecule have not 

the same radius of gyration. The resulting magnetic field acts as a 

perturbation on the movement of the electrons. The final result of 

the movement of nuclei and perturbed electrons gives the rotational 

magnetic moment. Fermi was the first to perform such calculations. 

Measurements of such magnetic moments are performed either by study- 

ing Zeeman splitting in microwave spectroscopy or by molecular beam 

methods. The magnetic moment is given by ~= gj~ ~N where J is 

the rotational quantum number, ~N is the nuclear magneton and gj 

the rotational Lande factor, gj can have either a positive or 

negative sign: see Tablel- The larger the molecule the smaller in 

general is gj. Nor N 2 at room temperature with J of the order 

8 one has a value of ~ of about 3 
Table I 

nuclear magnetons. So this magnetic 

moment is around i00 x smaller than in Molecule gj 
_ a paramagnetic gas. Although the mag- 

H 2 + .88 netic moment is much smaller than in the 

HD + .66 Senftleben ease, the effect~ the field 

will be the same, since it functions only 
D 2 + .44 
N 2 - .28 as a handle to mske the molecule precess 

in a field. It has, as such, nothing to 

do with how large the magnetic effect can 

become at saturetion, this depends only on the nonsphericity. It is 

true that the very small magnetic moment makes it more difficult to 
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have the molecule precessing rapidly enough to compete with the col- 

lision process that tends to maintain the polarization. This diffi- 

culty can, however, be overcome by increasing the field and so ~@p, 

or by decreasing the pressure and so increasing ~f till ~ ~f is 

again of order 1. For many molecules, fields of 50.000 ~ and pres- 

sures of the order of a few mm are sufficient. The combination of a 

better understanding of the physics behind the field effects, and the 

realization of its general occurrence, has opened s new field of re- 

search in the study of transport properties. 

Gorelik and Sinitsyn extended the Leiden work on the viscosity 

to the heat conductivity ~8] . Since then, a large amount of experi- 

mental data has become available dealing with molecules like: N2, 

CO, C02, and with the hydrogen isotopes, CH4, CF% and SF6; while 

for more complicated molecules some data is also available [9, lO] 

From the foregoing, it is clear that an electric dipole moment 

has the same effect in an electric field, provided that it has a non- 

zero component along the axis of rotation of the molecule. So all 

molecules having the electric analogue of the Zeeman effect (the 

linear Stark effect) will also give an electric effect. Molecules, 

such as CO, which have no net component along the rotational axis, 

although the dipole moment is not zero, will show a different be- 

haviour: the perturbation by the field has to cause a dipole compo- 

nent alQng the axis of rotation before the effect of precession ~n 

occur. As s result the effect is of higher order in the field -- 
E P 

instead of -- . In spectroscopy this is known as the second order 
P 

Stark effect. After some unsuccessful attempts in the thirties, 

Senftleben Ill] obtained the first successful measurements of the 

effect of an electric field on the thermal conductivity of polar gases 

(1965). Following an earlier but not completely convincing attempt 

by Cioara, the first reliable results for the viscosity in an electric 

field were obtained by Gallinaro et al., in Genoa ~12]. One experi- 

mental difficulty is the fact that while a low pressure gas can be 

subjected to any amount of magnetic field, this is not the case for 

an electric field because sparkling occurs st relatively low fields. 

This makes the experiment rather difficult. 

For the sake of completeness, one has to realize that practically 

every molecular anisotropy can give rise to a precession under suit- 

able conditions. One can think of electric quadrupole moments in an 

inhomogeneous electric field, and of anisotropic electric or magnetic 

polarizability or susceptibility in, resp., electric and magnetic 

fields. As far as one can see, however, the fields necessary to cause 
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a reasonable amount of precession are too high to make practical ap- 

plications possible at least in the dilute gas regime. 

Before continuing this introduction it is important to take an 

inventory of the different nonequilibrium phenomena that can occur in 

a gas in the presence of an external field. As an illustration the 

thermal conductivity will be treated in some detail. 

From nonequilibrium thermodynamics we know that for small devia- 

tions from equilibrium, the general expression for the heat flux, ~, 

is given by ~ = - ~ . VT, here ~ is a second rank tensor. Physical- 

ly, this means that a heat flew in, say, the x-direction depends not 

only on the temperature gradient in that direction but also on the 

gradients in both the y and z-directions. The coefficients are not 

all [ndependent. The space symmetry of the system will reflect itself 

in the properties of ~ . This is known as Curie's principle. So one 

has, e.g., in an isotropic medium ~= ~U. The time reversal in- 

variance gives rise to the Onsager relations which give that in general 

in the absence of a magnetic field the heat conductivity tensor is 

symmetric. Consider a gas in a magnetic or electric field along the 

z-axis. By the presence of the field the symmetry of the system is 

lowered. It is clear that the situation still has rotational sym- 

metry around the field. Physically, this means that we may rotate our 

measuring set-up around the z-axis without changing the measured values 

Z 

y 

× 

Fig. 2. Schematic diagram of the effect of axial 
symmetry on a measurement of the thermal 
conductivity. 

The physical consequence of this invariance is that for equal applied 
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gradients we will measure equal fluxes as in the non-rotated situation 

So we see that the rotational invariance gives the condition R z ~ = ~ , 

where R z is the operator for a rotation around the z-axis. As a 

consequence the thermal conductivity has to be of the form 

qx 

qy 

qz 

(VT) x (VT)y (re) z 

-~xx " ~xy 0 

~xy - ~xx 0 

o o - a  ZZ 

Further information can be obtained from inversion symmetry. From 

parity invariance we get as ~ ~(~) = ~(-E), the condition: 

(E) = ~ (-_E). All coefficients have to be even in the applied 

electric field. We know further that if we rotate the set up around 

the x- or y-axis over 180 ° the physical situation is again unchanged 

provided that we also invert the direction of the field. In this way 

one obtains that off diagonal elements in ~ are odd in the field. 

This condition is in conflict with the one obtained from inversion 

symmetry, so that the off diagonal elements have to be zero. As a 

result, the thermal conductivity tensor in an electric field has the 

fo rm 

~xx 0 0 

(_~) = o ~xx  o 

0 0 ~zz 

For a magnetic field the situation is different as ~ is an axial 

vector: ~ (~) = ~ (~). This condition does not require the elements 

of ~ to be even in the field. From the 180 ° rotation we obtain as 

in the electric case: 

~ii (+H) = ~ii (-H) and ~xy (H) = -~xy (-H) 

Hence the diagonal elements are, as in the electric case, even in the 

applied field. The off diagonal ones are odd in the field. In the 

presence of a magnetic field the scheme becomes rl3J : 
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(xx xy o I ( o ~(H) = ~xy ~K~ o : ~tr  z o 

= 0 0 ~zz 0 0 ~II 

Application of the Onsager relations gives no further information in 

the case of either E or H . 

Note, however, that these general considerations tell only what 

might but not necessarily what will happen. The coefficients that 

are allowed to be non-zero can still be zero in a specific case (e.g. 

8 noble gas in a magnetic field). So it is of some importance to see 

whether we can predict, on the basis~ the molecular interaction, that 

the transverse coefficients can be expected to be non-zero. This is 

not 8 trivial task as is shown by the fact that although already in 

the thirties these symmetry considerations were known, the transverse 

effects were erroneously ruled out by considering a mean free path 

picture (von Laue). Let us consider a disc-like molecule moving with 

molecules moving to the left molecules moving to the right 

. . . . . . . .  . . . . . . .  

_', k'-¢/', / % 1 /  / 
C ,,/~ ,, i A / / C 

\ \\F... ~ pr~cession / // " 
",. ~,~'"" ,"" direction " ' / " " S " ~  . / /  

field i~rl~ndicular to the plane of drawing 

Fig.3. The origin of the transverse heat flow. 

a velocity ~ in the direction perpendicular to a temperature gradient 

As we will see later the polarization of angular momentum will be of 

the form: (~.~) ~. ~_~ i.e. there is a deviation from the random 

orientation of ~ with respect to ~, with a preferred direction at 

45 ° with respect to ~ and ~__~. This is represented in the figure. 

Let us now see what happens if we switch on a magnetic field in the 

third direction. The molecular axis will start to precess - in our 
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case in the plane of the paper. This precession will be the same for 

the molecules moving to the left and to the right. But as a conse- 

quence of the precession the molecule moving to the right precesses 

so that its disc lies along the velocity direction and So has a de- 

creased cross-section. A molecule moving to the left has, by the 

precession, its disc facing the direction of motion, so that such a 

molecule has an increased cross-section. Consequently, the resistances 

for right and left heat flow are no longer equal and a net transverse 

flow can originate. This corresponds to the presence of non-zero off- 

diagonal elements in the heat conductivity tensor: i.e. heat will be 

transported perpendicularly to both gradient and field. (In an elec- 

tron gas these coefficients are named after Righi and Leduc. These 

authors studied this type of phenomenon in bismuth at the end of the 

last century, 1885). Experimentally, this phenomenon will show up in 

the following way. The lateral boundaries will cause the transverse 

hot  
\ \ \ \ \ \ \ \ \ \  \ \ \ ~ \ \ \ \ \  \ ~ \ \ \ \ ~ \ \ \  

_•/•\\\\q t r \\\\\\" 

d 

H 

Fig. 4. Schematic diagram of a measurement 
of the transverse heat flow. 

heat flow to heat up the wall at the right, and cool it at the left; 

this situation continuing until the normal heat conduction balances 

this effect. Compare this with the Hall-effect in metals where the 

resulting EMF, rather than the Hall current, is measured. For an 

electric field the transverse effect is obviously absent as this vec- 

tor does not introduce a distinction between left and right in the 

problem. So that the transverse transport can not tell which direc- 

tion to choose (the left-right symmetry is not broken). 

Similar transverse transport phenomena occur also for viscous 

flow in a magnetic field. The transverse transport shows up, for 

example, in the following way: The boundary conditions convert the 



423 

momentum flux into a pressure difference ~p across the slit arrange- 

ment. These symmetry considerations, prompted by discussions with 

8p 

Fig. 5. Schematic diagram of a measurement 
of the transverse momentum flow. 

Mazur, stood at the origin of the first observations of such transverse 

effects. They were first observed in Leiden in the viscous flow by 

Korving et al. [l~] . This was soon followed by similar results for 

the thermal conductivity (Hermans et al., Leiden ~15]; Gorelik et 

al., Moscow [16] ). In so far as the sign in the problem is deter- 

mined both by ~ and ~_, it is clear that changing the sign of 

will have the same effect as changing the direction of H. So the 

sign of ~T or ~p is directly related to the sign of 6. This 

situation is analogous to the Hall effect. There the sign of the 

EMF gives information about the sign of the charge carrier~ here it 

gives the sign of the molecular magnetic moment. 

In the case of viscous flow one starts from the general expression 

for momentum transport: ~ = -2~__ : ~s where ~s is the sym- 

metric pressure tensor; ~ is thegeneral, 4 th rank, v"iscosity ten- 

sor. Similar considerations as for the thermal conductivity red~ce 

here the 81 elements of ~ to 7 independent ones. Five of these 

are even and two odd in the applied magnetic field. The odd in 

field coefficients are zero in the case of an electric field. The 

expressions for the even coefficients were partially given already in 

1939 by Von Laue, who pointed to the analogy with the problem of 

elastic deformation in crystals. The first general treatment was 

given by Hooyman, De Groot and Mazur. They introduced the following 
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scheme: ~ = (0, O, H). The coefficients ~I' 72' .... ' 75 con- 

components of the symmetric traceless tensor ~ to the nect the 

components of V~ They can therefore be called coefficients of 

shear viscosity. The coefficient ~v connects the traces ~ and 

div ~ and is therefore the volume viscosity. The seventh coefficient, 

, describes a cross-effect between shear and volume viscosity. 

This notation was extensively used in the presentation of the earlier 

experimental data. The way in which the different coefficients are 

defined has disadvantages in that the notation is not self-evident. 

A more elegant presentation can be obtained starting from a 

spherical tensor description. For the shear viscosity one has by 

Coo symmetry: 

~ : _ ~  [Vv ]~ ,  ~ ~= o ~ 1 ~ ~. 

Here use is made of Curie's principle that fluxes are only coupled 

to forces that belong to the same irreducible representation of the 

symmetry group of the equilibrium state. As ~= ~ ' ~o is 

real, while the other coefficients are in general complex. 

Following Coope and Snider [17] we make the link to the conven- 

tional viscosity coefficients by introducing the real coefficients 

+ and ~ are resp. even and odd in the field. In terms of these 

coefficients one has 

r/~ ~'- : -~ { ~  [Vv] ~ :  

In cartesian tensor notation one gets: 

'(~ilZ) I12 Fl~i 
% 

- -  - 2 .  

O • 

4 

~" ~ 

Sx~ 

Ilz (s,; S~) 
S~ 
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where S has been written for 
rs 

' ~ ~Vr %Vs _ 1 
Srs i (VV)rs = ~ ~ + ~ V.v ~rs 

-- ~x s ~-~ Y - _ 

and where the dots indicate those tensor elements which vanish be- 

cause of the axial symmetry. The relation between ~ and the co- 

efficients of De Groot and Mazur is given in Table II, ~ 

corresponds to even in field effects, and ~ to transverse effects. 

~o + ~ 1 

~l- 75 

Table II. 

Apart from changing the field free transport coefficients the 

change in symmetry caused by the external field can also introduce 

cross effects: i.e. a gradient in one property may in the presence 

of a field cause a flux in a different quantity. The difference in 

what H and E can do stems from their different behaviour under 
m 

inversion. Loosely speaking the even parity of _~H implies that it 

will not couple effects that were not coupled in the absence of a 

field; the odd parity of E works the other way around. Consequent 

ly an electric field can introduce a cross effect between a momentum 

flux and an energy flux or particle flux, and vice versa. 

II. THE NON-EQUILIBRIUM POLARIZATIONS 

The question to be answered in this section is: What do we 

know about the structure of the polarizations induced by the presence 

of a flux of momentum or energy? To this end, we will first treat 

as an illustrative example the shear viscosity in a dilute gas with 

rotating molecules. As a starting point one has the linearized 

Boltzmann equation 

2~7_ : ~v + ~ [~ ~] = -n R o 
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where ~ is the reduced molecular velocity W 2 = ~ .  ~ is the 

Z e e m a n  H a m i l t o n i a n  a n d  R o t h e  l i n e a r i z e d  W a l d m a n n - S n i d e r  c o l l i s i o n  

operator. Furthermore one has ~ = - B : ~ , where B is a 

second rank tensor made up from ~ and W. Following Kagan [1,2] 

one w r i t e s :  

: Z Bjqrse [~]P [~]q s r ~s 
where S r is a polynomial in W 2 corresponding to the Sonine poly- 

nomials in the treatment of spherical mol@cules, while R s is a poly- 

nomial in j2 So = Ro = i ~. B2qrs is a coupling tensor of rank 

p + q + 2, ~ is a p + q fold contraction. Note that parity con- 

siderations restrict p to even values. In our illustrative example 

we will Consider only: 

B 20, B 02 and B 22 with r = s = 0 . 

By taking moments of the linearized Boltzmann equation, one obtains 

three equations: 

< _~_W B °2 I a Ro -W~o : 

< ' ~  ~ r"-'>o 4- B22 + __ R ° WW J J ~ ~. 

0 + field term = ('J 7_" R 0 "W _W~o : B 20 +<'_J J" R o --~--J>o : B£ 2 

_ ~ ~.22 

o + ~ield term= 4_~_ 'w ~ W~>o: B 2° -- -- R 0 _ _ 

~- ~o Bo2 +<~ ww % ~_ : 

+ < ~  ~ ~o "w ~ ~ J>o & ~S 2 

~As we will see later there are indications that an expansion based 
on the unit vector in the J direction is more appropriate. One can 

take this into account by absorbing the corresponding factor in j2 

inR s. For instead of ~!! one has R o :F'(J 2- i~ -÷. 
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with ~ the isotropic fourth rank tensor 

a~ikL = ~ , , ; , , % ~ * Z ; ~ , - = % ' 2 ~  . I n  the s i t u a t i o n  we con- 
aider the external field is always so small that its effect on R o 

can be neglected. Hence the quantities~_.Ro--~o are isotropic and 

are thus proportianal to ~ . 

(_w_w R ° _w_W2o 

and <J_ J R O W _W>o 

In this way one has, for example, 

. r2o1~ 
[o2]  

-= 20 -- 

Here [Pp. ~. ]  are c o l l i s i o n  i n t e g r a l s  corresponding to the sguare brac-  
ke t  i n t e g r a l s  i n  the t rea tment  o f  sphe r i ca l  molecules° 

% Simi lar ly<_~_W R O W J ~ 20 is p r o p o r t i o n a l  to the sixth 

rank isotropic unit tensor ~D : D~j'~ = ~r~ ~ij'~/&~k~4r ~"~/~r 

For < ~ q~ R o T~ ~-7>o the situation is more complicated 
as one can have more than one isotropic unit tensor of rank 8 with the 

correct symmetry in the indices. At this point one makes an approxi- 

mation known as the spherical approximation and uses only one of these 

tensors : 

(Jj ww ~o ww ~J ~- 22]a~_= 

In this way one obtains: 

! a = [20]  B 2° 
n ~ 

fo ] 
Field term = 20 = 

Field term = 20 

E,o [ f ]  + 02 ]  + D $ B 22 

+ [o2] B °2 +(]D°2 $ B22 22 = - 

In the field free case 

So one has: 

I 
- -  = 

n 

B pq itself is isotropic, hence 

Bo2 = B o2 A 

B 22 = B 22 D 

+ 
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o~ p [o~] ~ o : [~o] [o23 ~o2 
+ + 22 

22 ~20 22 ~02 [2<] ~22 
o = [2o3 + [o 3 + 

p~.'q 

The most drastic approximation one can make l~| = 0 results in 
B20 i ~E~ ~ . - n ~ " One has in general ~ = - 211 : ~ v with 

a fourth rank tensor. For ~ one finds: ~ = An kT 0 In the 

field free case this reduces to ! = ~o ~ or: ~= ---2~o 

If 811 polarizations involving J are neglected one obtains 
I kT 

_ ~sph = r ~ as in the case of spherical molecules. The usual 

C °l approach in our case is to assume k~ / O, while the other off- 

diagonal square brackets are set equal to zero. This is known as the 

diagonal approximation. In this way one obtains in the field free 

case: 

i 20 22 

= n [20] [201 [027 i-~ [20J [22] J 

and [ [02 20]2 [2012 1 

~o~sph 1 + [20][02] + ~ [203[22] 

-i 

In this approximation every polarization gives its separate con- 

tribution to the viscosity. These corrections are quadratic in the 

square bracket describing the coupling. Use has been made of the fact 

that [Pp, qq] = [P" q ] . p  q This is true if no polarizations which 

odd in ~ are involved (q + 9" even). For the case when q + q" is 

odd, one has [Pp. qq~ = - [Pp qq]. This is related to the time 

reversal properties of the collision operator. Since the diagonal 

square brackets are positive definite, corresponding to the fact that 

a system tends to equilibrium, one has the important conclusion: 

Polarizations even in J increase and those odd in J decrease the 

viscosity. 

We will here omit the derivation of the behaviour of ~ in the 

presence of an external magnetic field as this is treated-elsewhere 

in this course. Three important conclusions can be drawn from the 

field free situation: 

(i) Every polarization in ~ gives in the diagonal approxima- 

tion its own contribution to the field effect. 

(ii) The sign of this contribution depends on whether the 
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polarization destroyed is odd or even in the field. The viscosity 

decreases in a magnetic field for even and increases for odd in J 

polarizations. 

(iii) The magnitude of the field effects is quadratic in the coup- 

ling integral. 

As shown by Snider in his lectures one has further: 

(iv) The viscosity tensor in a magnetic field contains two types 

of elements: 

(a) Elements that are even in the field. These show a field de- 

pendence that is a superposition of curves of the type 

f+ (~), with ~= O, 1 ... q where q is the rank of the 

polarization in ~. 

f + ( x )  = x2 ~ • 

l + x  

(b) Elements that are odd in the field. These show a field de- 

pendence that is a superposition of curves of the type f-(~), 

with ~ = 1 ..... q. 

f - ( x )  = x ~ . 

1 + x 

For the polarization considered here one has the following scheme. 

~o ÷ 

~i + 

g2 + 

fl- 
q 

0 

-To2 f+(~02) 

-~02 f+(2 ~02) 

-~02 f - ( I02)  

-~02 f-(2~'02) 

-~'2217f+(1'22) + 6f+( 21' 22)] 

-~'2216f+(~22) + 4f+(2~ 22)] 

-~'22 [+5f-~1'22) - 6f-(2:%)] 

Table II 

Here ~ Pq and ~pq are related to the collision integrals, ~ is 
H 

further proportional to the quantity g ~N ~ " Similar conclusions 

hold for the other transport coefficients like thermal conductivity 

e t c .  
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Now that we know how the different non,equilibrium polarizations 

show up in the field effect, we can set ourselves to the task of decid. 

ing on the type of polarization present. The decrease or increase of 

the viscosity in a field will tell immediately whether the dominant 

polarization is even or odd in ~. To know whether more than one 

polarization is present asks for a more detailed study. It appears 

to be difficult to decide on the presence of more than one polariza- 

tion from the shape of the ~ curve alone. It is necessary to study 
P 

in detail the different elements of the transport coefficient tensor. 

This means that one has to perform measurements as a function of the 

orientatioo of the magnetic field. In the following we will discuss 

the situation for the heat conductivity and the shear viscosity. The 

discussion will be centred around the behaviour of diatomic, at most 

weakly polar molecules; at the end we will make some remarks about 

more complicated molecules. 

The thermal conductivity 

The structure of the A tensor is rather simple and allows, 

w i t h o u t  g r e a t  d i f f i c u l t i e s ,  a d i r e c t  d e t e r m i n a t i o n  o f  ~ ~ and 
~tr. The experimental arrangements are given schematically in Fig. 6. 

i i . . . . .  ...... 

..... -- ..... ..... 

Fig. 6. Schematic diagram of the experimental 
arrangements to measure the elements of 

. 

&~ ~ tr 
The experimentally obtained resolution in -~- and ~ is lO -5. 

Fig. 7 gives a typical set of results C3] . In general the thermal 

conductivity decreases in a field pointing to a dominant polarization 

even in J. The curves dra,,m in Fig. 7 correspond to a W~-~ con- 
I 

~ results. The shaded areas indicate tribution fitted to the 
A 

. • O 

the experimental uncertamntmes. A more sensitive test for the pre- 

sence of other polarizations is found by studying the ratio ~ ~-~j 

at saturation. This is experimentally the best determined quantity 
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×IG ~ 

T = 8 5  K • - ~--? 

Ak" 
Ao 

10' H/p ~ 10 3 10 4 O¢/torr  10 5 

Fig. 7. A~ A~u and ~tr H ' ~ ~o versus ~ for HD at 85 K 

Drawn lines represent W J J contribution. Shaded 
areas are the estimated experimental uncertainties. 

and it is theoretically more sensitive than the ratio ~-~ )max 

as is shown in Fig. 8. 

2,105 
2 

1.500 

IAX±l~t 
I xt~Im~× 

kA ;k"/me x 

0 I I 
0 ~ , , /%b ,  2 0 . 1  0 . 2  

i 

Fig. 8. 
/ tr 

Theoretical dependence of ~sst I~ Imsx and 

(~/A~)m~ x on the relative strength of the 

contribution • 

W J 
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The result of such an analysis is given in the table III: 

Gas 500 K 85 K 

N 2 1.57 + 0.01 

co t.52 + 0.01 

HD 1.51 + 0.01 

pH 2 i. 50 + 0. iO 

o D 2 i. 60 + 0. i0 

1.5o + 0.03 

1.49 + o.o3 

I.~9 + 0.03 

It is seen that the ratio ( ) differs very little from the 
~ ~"~_% 

value 1.5, corresponding to a W J J polarization. One can safely 

conclude that for diatomic at most weakly polar molecules, W ~-~ 
is by far the dominant polarization present. 

The shear viscosity 

The analysis of the situation for the shear viscosity is not so 

simple. In the presence of a field the field free Navier Stokes 

equation p ~ + Vp = ~o V 2 ~ + (~ ~o + ~ v ) ~ (~ " ~) becomes 

far more complicated, containing seven instead of two transport coef- 

ficients! Consequently one has to seek simple experimental situations 

i.e. situations where in the absence of the field only a limited 

number of second derivatives ~ V <  are of importance. This is 
~xp 9Xr 

found in the case of a straight capillary with rectangular cross- 

section (length ~, width w and thickness t, see Fig. 9). When 

2, w m, t only one velocity component (along ~ ) and one velocity 

gradient component (along t) are of importance. The influence of the 

magnetic field on the flow through this slit can be studied as a 

function of the orientation of the field. In the absence of s field 

all second derivatives of the velocity in the slit can be neglected 

except ~ZV~ /~z As all field effects are small, at most i~ of 

o this is still true in the presence of a field. In polar coor- 

dinates one gets for the pressure gradients along and across the 

slit 8s 8 function of the orientation of the field g4~ : 
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I 
,I -I- W *" 

L B "--. 

/ 

A 

H 

J_ 

Fig. 9. Schematic diagram of capillary with 
rectangular cross-section. 

{ in2   '2+I sin2 2o+,i  co 2 
~]J 92v~ 

+ c°s~ [~F sin~ 0 + '~-+ ° °~  

,~j 

+ cos.~ cos ¢ s i ~ ¢ [ ~ ' l  + -  '~2 + 

3'o+._+ '2 + ] ' 2 V k  

with # and @ as given in Fig. 9. It is seen from these equations 

that the pressure gradient ~ ("longitudinal effect") is coupled 
+ 

3~° + ~2+ + and 1~2+o The to a linear combination of # ' ~i 

pressure gradient @@~ in the "transverse effect" equation can be 

split into two parts: a combination of the odd-in-field coefficients 

I- and ~2 and a combination of differences of the even-in- 
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field coefficients. In this experimental set up the volume viscosity 

does not appear. 

In the following scheme we give the situation for which these 

expressions take their simplest form: 

Longitudinal effect: 

~ 3 

i 

' 

i/ + 

ft 

• = z el~ W" 2 
O -  

e=o I e=~ 

e ~  e 4 

'~ aL2 

82v~, 

812 

~_ 2,k 

,,k" ~ . 7  

a~. '%". +,~ am+t, 
~w+ 2 m2 

aj  2 a(2 

Tromsverse effect: 

.+,% + - ;  

~/ +/ H 

~ e "  3 

i 

aJ 2 ~  8i 2 

~v K a_D. -'4{ __ 
a j  ~12 

Pig. I0. The shear viscosity coefficients obtained 
for different orientations of the field. 

Experimental conditions for accuracy are optimal if the measurements 

are performed in one and the same slit arrengement. Furthermore the 

orientation of the magnetic field can only be changed conveniently 

by turning s magnet around the apparatus i.e. by varying the orienta- 

tion of the field in a fixed (horizontal) plane. It is convenient to 
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choose this plane in such s way that it contains two of the simplest 

situations illustrated in the foregoing scheme. 

For the longitudinal effects one strives in this way at the 

plane containing ! and II, i.e. the slit is inclined under 45 ° 

to the horizontal plane in which H rotates. This is illustrated 
in Fig. ii. 

k 

\ 

i 

Fig. Ii. Schematic diagram of capillary arrange- 
ment to measure the longitudinal viscous 
effects. 

in this situation one has 

~-J~ I 3~°+ + ~2+ sin$~ cos2~ + cos~ 2~] @2vk 
k = 4 + f2 + + t~ ~in 

For the transverse effects one combines situation VI and VII. This 

is illustrated in Fig. 12. 

For this case one has: 

PA - PB ~i- cos 2~ sin2 - ~ ~2- cos ~ sin 2 2 

wc~ p~fB = fo ; 

here ([P)AB is the pressure gradient along the length of the 

capillary at the plane AB. Pigs. 13 and 14 give the results for 

W2 and CO st room temperature. 
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Ii .--  X 

Fig. 12. Schematic diagram of capillary arrangement 
to measure the transverse viscous effects. 
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J 

Fig. 15. 
H ~%+, ~i + and A~2 + as funotions of 

for N 2 at room temperature.------,J_ _J con- 

tribution. 
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The decresse of the viscosity in a field points again to a polariza- 

tion even in ~. Further analysis shows that only minor deviations 

from a behaviour given by a ~ polsrization occur. 

2.0 

1.5 

1.0 

0.5 

I I I i i i i 1 ]  
O 0  ~ H / p  ,= 

r i , , , v ii I , , , , , ,i 

o 

CO o o 

too // 

I A i i I i i I 

10 ~ Oe/to r r 10 4 

Fig. 14. The transverse viscosity coefficients 91- 

~2- for CO at room temperature. 

: ~--~ contribution. 

In this respect especially, the information from ~o + is signifi- 

cant, because of the fact that ~o + is zero is directly related to 

the tensorisl structure of the polarization and is insensitive to the 

inclusion of further scalar dependence on W 2 and/or j2. We will 

come back to this point later in discussing the conclusions that can 

be drawn from the small deviations from a simple ~ J~ behaviour. 

An interesting consequence of the structure of the ~ pelarization 

is that it can be directly observed by studying flow-birefringence. 

(See Hess [5] ). As the refractive index n of dilute gases is only 

slightly different from one and as the amount of ~ ~ polarization 

remains always small, the birefringence is small. It is, however, 

possible to observe it; a typical result ~6~ is shown in Fig. 15. 

So far we have limited our considerations to simple diatomic 

molecules, that sre at most weakly polar. We will now consider 

briefly the situation for more complicated molecules. For the vis- 

cosity the situation is not changed too much. In symmetric and 

spherical tops like CH3F and C~[7] the dominant polarization 

has the tensorial structure of 'J J'_ _ . 0nly in the case of NH 3 
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does the field free effect have the opposite sign, pointing to the 

dominance of an odd in ~ polarization [8] . The presence of the 

inversion combined with a large rotational level splitting makes 

this molecule a special case. For the heat conductivity the situation 

is different. For symmetric top molecules a change of sign of the 

field effect with increasing dipole moment is observed [9] 

12 

8 

L I , __I L I , L 

Vv ~ 4 0 0  s-' 8 0 0  

Fig. ]5. The flow birefringence ~n/n for CO as a 
function of the applied velocity gradient. 

This points to the presence of an odd in ~ polarization in the heat 

flow in strongly polar (symmetric top) molecules. Measurements on the 

angular dependence are needed to decide on the structure of this 

polarizatioh. Furthermore it is necessary to perform measurements 

on strongly polar diatomic molecules to investigate how far the sym- 

metric top structure is the cause of this effect. This work is now 

in progress. Note that in the case of symmetric top molecules a 

third molecular vector apart from W and ~ can play a role, i.e. 

the orientation of the figure axis with respect to ~. Classically, 

this can be described by J~ the projection of ~ on the figure 

axis. Polarization can now also involve J~ . J~ has the charac- 

ter of a pseudoscalar, odd under inversion. The interesting point 

is that in a heat flow, also the polarization J$ ~ is now allowed. 
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Fig. 16. ~ l l / ~ o  ss a function of E for some polar gases. 
P 

As was pointed out by Waldmann and Hess [i0] , such a polarization 

corresponds to an orientation of the electric dipole moment. Measure 

merits to detect the corresponding thermo-electric effect have so far 

not been successful. 
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III. THE LIMITATION OF THE ONE MOMENT DESCRIPTION 

In the foregoing section two points have been clarified. We 

know the tensorial structure of the dominant polarization, while further- 

more the question was answered as to how far the effect of this polar- 

ization can be described by one time constant i.e. by a curve of the 

form f~ (~). Note, however, that o n  the basis of the analysis 

given no distinction can be made between say'~ J_'and _~_J R (j2). Both 

H 
the angular dependence of ~ and its behaviour as a function of ~ will 

be the same in both cases. Furthermore deviations from the simple 

one time scale behaviour, if found, can be attributed to two main 

causes. I) Within the same tensorial structure of the polarization 

more than one polynomial in W 2 or j2 has to be taken into account. 

The physics behind such a situation is that the dependence of say the 

reorientation cross section on j2 is such that one average is not able 

to represent this distribution adequately. 2) The presence of other 

types of polarization say J~--~and ~-~-~. As terms odd and even in 

have a contribution of different sign, it is nearly always possible 

to make such a combination of two additional polarizations that the 

deviation from the simple ~ behaviour can be explained. To be able 

to come to a more definite conclusion it is necessary to use the infor- 

mation obtained from other sources. A study of the Depolarized Rayleigh 

Line (DPR) is in this respect most promising for two reasons [I,2] : 

(i) From the physics of DPR one knows the type of orientational 

polarization involved. 

(ii) A study of the lineshape allows one to determine in how far 

more than one time scale is present in the decay of this polarization. 

The relevant quantity for the descri~bion of light scattering is 

the polarizability tensor ~. For linear molecules it can be written 
= 

in the form 
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being a unit vector along the internuclear axis. The depolarized 

Rayleigh line is associated with that part of the tensor operator 

u_~that is diagonal in the rotational quantum number j. This part, 

~_ (~), is related to the tensor J,~ by 

JJ 
- -  m 

Due to the orientational fluctuations the local instantaneous mean 

value of this tensor is in general non-zero and this gives rise to 

the occurrence of depolarized Rayleigh light scattering. The depol- 

arized Rayleigh line profile is determined by the correlation function 

C (t) describing the decay of these fluctuations [3]. 
'_j jf )>. 

/ .-T7 (o) :2- (t 
c (t) = 

(o) : - - (o 

The spectral function R(~) describing the depolarized line profile 

is related to C (t) by 

I I e-2n~t c (t> = ~o R(~) at 

one assumed that the decay of --~J j_,/(j2 - ~) can be described with If 

one rate coefficient Cone-moment approximation) one has 

and the correlation function becomes: 
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"n<v>o ~DP~ t 
c ( t )  = e 

The effective reorientation cross section~Dp R is given by the collis- 

ion integral for orientational polarization: 

4 - 2 o  

The experimental results show pronounced deviation from this behaviour 

as is shown in fig. 17. 

10- 

5.10-30 

I I 

D2~ 

" -~bHL 
"-. . , .  = 

1 I 
t "  _ 5 10 orb.units 15  

Fig.17. The deviation from a Lorentzian shape of the de- 
polarized Rayleigh line for the gases nH2, HD and 
nD 2 . 

It is clear that more than one time scale is present. From a study 

of the behaviour of the hydrogen isotopes one comes to the conclusion 

that the origin ff this deviation is to be found in the fact that the 
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microscopic cross sections involving changes in ~ are strongly dep- 

endent on the quantum number j. Under such conditions it becomes 

plausible that one correlation time or one moment is not able to 

fully take into account the consequences of this situation. Hence 

one is lead to a description involving also higher moments 

<~ j~J~ ~ where Rs is a polynomial in J2. The moment equations 

for this situation are: 

with R I = I. ~is an effective cross seCtion matrix with elements given 

by the corresponding matrix elements of the collision operator. @ij 

describes the coupling between the different moments. For the correl- 

ation function Cik one obtains (of. Hess)[~] the.expression: 

(t) (e-n ~V>o 6~ 
Cik = = )ik 

For the description of DPR one needs Cll (t), and one has: 

-n <v> ° 9t 
~iI (t) = (e )II 

For short times this can be written as: 

n 2 V~e2 X < 
ell (t) = 1 - n <v>o611 t + 2: ~ ij 

t 2 
ji 

Hence in the limit for t--~o the several moment description reduce to 

the one moment ~ituation~ and the initial slope of Cll (t) can be id- 

entified as 611 = ~DPR " An interesting measure of the importance 

of the distribution of correlation times is given by the area under 

g the correlation function: L(t) dt~ -I. Note that in the presence 

of only one correlation time 6 = ~DPR" A survey of the situation is 
given in the table: 
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J 
nH 2 

PH 2 

lID 

nD 2 

6 

0.00 

o.o15 

0.08 

0.II 

N 2 

CO 

CO 2 

OCS 

@ 

0.08 

0.065 

0.06 

0.00 

At th~ point it is interesting to compare the values of 6Dp R with 

what one gets by analysing the field effect on the viscosity with a 

Qne moment description. As shown in the following table large dif- 

ferences are found. 

N 2 

CO 

CO 2 

69p~ 

34.4 + 0.6 

45 + 1 

88 + 2 

E 

23.7 + 0.9 

32.5 + 0.8 

69 + 1-5 

One i@ tempted to conclude that @FE is clearly not associated with 

but with say ~ ~ . A more plausible solution to this problem 

is found when one takes the spread in correlation times also into ac- 

count, when analysing the viscosity data. It is instructive to 

compare in this respect the situation encountered in DPR with that 

in FBR. In both cases the observable is related to 

j~_~/. In DPR one looks at its time dependence and as we have 

seen one can find a region where the effects of higher moments can 

be neglected. The situation is, however completely different for 

FBR. As this is a steady state effect one measures also the effects 

of all other moments. In fact one has ~ ~/7C~T__ (t) dt [4J where 

C~T (t) is the correlation function: _~(0) : ~}/(~%'~)>o 
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This means that the distribution of correlation times 

manifested by the overallbehaviour of DPR will show up in the actual 

value of ~n n" A similar situation holds for (~)sat" Hence one 
I. 

expects that both the FBR and the saturation of the FE will be related 

to ~DPR than to 6DPR • more 

The moment equations one has to solve to obtain C~T (t) simpli~ 

considerabiy if one assumed that the collsions couple the deformation 

in velocity space~_~-~_> only to one moment in ~ space. Such a sit- 

uation is suggested by work by Snider. In fact he showed that in 

lowest order distorted wave Born approximation <_~W~s coupled to 
< ~-~ > and not to higher moments. In this ap- (y(2)~ = j2 (j2 _ ~ )  

proximation the moment equations read: 

9~ 

,~y..~c~__ .,,<~.Q<~w'~?- ,<.>.~,, <¥r,,)-., <v>,T_ 6,~ <R..¥ "~) 
~ - -  . i ~  

The ~ matrix reads: 

¢"oo gOl 

6 =61o 

0 0 

~11 g12 

¢21 622 

Note that for large values of J one has: 

- _ 
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Under these conditions the quantities~ij__ (i > l) occuring in the 

description of the FBR are identical to the ones encountered in DPR. 

So the matrix bounded by the solid lines is identical to the one in 

DPE. 

For the correlation function e~T (t) one has: 

-n <v~ o ~t 
C~T (t) = col (t) = (e )ol " 

One gets 

Q @ 

From the form of the matrix =~ and observing that 

I n <v~ o 6"t 6_i)oi (e = )~I dt =( . 

~O1 61o ~I one gets 
~Oo ~II 

(~i)o I gol i. 

Hence one obtains: 

An ~ 6#~ 
n 

Similarly starting from ~= nkT f]~ "_W W" (O)~_~_W (t)~ dt and 

solving Coo = (~ ~ (O)~_~_W (t) from the moment equations one 

gets: 

(~)sat A~2* (~T)2 " 

It is now possible to test this model by comparing ~ obtained from 

a combination of (~)sat and FBR. Preliminary results of such a 

comparison is shown in tke table: 

N 2 31.6 Z 0.6 

CO 40 + 1 

002 83 3 2 

N 

from DPR 6from FE + FBR 

31 + 1 

38 + I 

I~0 + 5 
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At the time of writing these lectures, investigations along these 

lines have only just started. So it is still too early to draw 

more definite conclusions, but the situation looks promising. 
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IV. THE EFFECTIVE CROSS SECTIONS AND THEIR BEHAVIOUR 

We have seen in the foregoing section, in how far the behaviour 

of the nonequilibrium polarization can be described by effective cross 

sections 6 that are matrix elements of the Waldmann-Snider collision 

operator. It is often convenient to use a systematic notation for 

these quantities. To arrive at such a notation one starts from the 

form of the expansion of the deviation from equilibrium in terms of 

irreducible tensors C~] (p~) and [~](q), while the scalar dependence is 

expressed using a series expansion in polynomials S~ (W 2) and R 
q (j2). 

s 2 
S O (W 2) = l, S~ (W2)= - (W 2 - ~). Furthermore we ~ake here R 0 (d 2 ) 

=[j2(j2 _ ~-½ to make R~ ~](2) = y(2) , and R~(~ 2) = ~ y(2). 

Finally R~ (j2) = (~ _ I). In the framework of such a description 

the matrix elements of the collision operator and hence 6 will be 

characterised by two sets of 4 indices: pqrs and p~qlr~sl. The 

diagonal cross sections for which p = p' ~tc., describe the direct 
-~0200~ describes decay of the deviation of f considered (e.g.~r =~0200 J 

the direct decay of~(2) polarisation by the collisions in the gas)° 

Those quantities are positive. The off-diagonal ones, where at 

least one pair of indices is unequal, give the strength of the coupling 
-~0200~) gives the between the different polarizations (.e.g.~T =~[2000 J 

effective cross section for production of~2) polarisation by the 

presence of a polarisation in velocity _~_W. Such quantities can be 

both positive and negative. In the example of flow-birefringence, 

for instance, th~ sign depends on the direction of the polarisation 

that is produced. For a general definition of the effective cross 

sections see Ill . The definition is relatively simple for diagonal 

and many of the more common off-diagonal elements. The notation 

discussed above can be simplified when there is no risk of confusion: 

a) for the diagonal elements one may write only one row of indices, 

e.g. G(0200), b) if no scalar depend~nce arises, one can omit the 
O2 last two zeros in the rows, e.g. g (20) . In the following table we pres- 

ent the most important effective ~ross sections with the physical 

processes to which they are related. 
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Effective 
cross section 

6(OOOl) 

~lOlO) 

~(moom) 

~(12) 

(~(20) 

~(02) 

~1200 ~ 

~'(I001~ 
1200 ~ 

O2 ~"(20) 

i 

Relaxation (decay) process 

Rotational energy~ro t 

(~2 - W2), transational heat flow 

(j2 _ 1), rotational heat flow 

y(2) Kagan polarization 

_~_, momentum transport, ~ 

y(2) tensor polarisation in ~-space, 

6T 

Polarizations coupled 

Transational heat flow Kagan polar- 
ization 

Rotational heat flow Kagan polar- 
ization 

~-~ polarizationy2) polarization, 

Source 

bulk visc ~v 

~' ~v combined 

~,~ ,~combined 

(~)~ FE 
P 

Sat FE ? 

Sat FE ~,~ 
combined 

Sat FE 

Not all these ~ are independent. 

Jest as for spherical molecules where the effective cross sections 

for the viscosity and thermal conductivity are related (Eucken factor), 

so there are relations among these more general cross sections. In 

fact one has the following relations ~2] : 
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6(lOlO) : 6(2ooo) + S (OOlO) <l) 

~;1010h I 
"I001~ : ~' =~rot g (0010) (2) 

~{I010~ = _ ~ ~0200~ 
, 1 2 0 0  ~ , 2 0 0 0  J (5) 

~ 2Crot (~lO001~ = 
 (OOlO) :  _,OOlO  c 2t  (OOOl) (4) 

6rl010• = 0 (5) ,ii00 ~ 

From the shudy of the FE on the viscosity one obtains directly both 

@(02) and @(~) . A considerably more complicated situation arises 

in the case of the FE on the thermal conductivity. The field free 

heat conductivity contains already three cross sections: ~(lOlO),6(lOO1) 

and ~ {lOlOh describing respectively the behaviour of the trans- 
-lOO1 ~ , 

lational and the rotational heat flow and their coupling. These 

quantities can be obtained separately by combining data on ~ with 

those on ~ and ~v' using also the relation (1). It is then possible 

to solve the situation for the FE on ~ where three additional cross 
sections occur: ~ (12OO) ~(1200~ ~±~uu~ , v, lOlO~ and ~i001 ~ describing respectively 

the decay of the Kagan polarization and its coupling to the translation- 

al and rotational heat flow. To do this one combines data on the 

field effect for ~ with similar information on ~ , making use of rel- 

ation (3). This situation is summarised in column 3 of table 

Havind reduced the experimental data to effective collision cross 

sections we can consider in some detail the information that can be 

obtained in this way. First of all there is the fact that the polar- 

ization odd in ~ are absent or very small, this notwithstanding the 

they occur in a lower order in the [~](P)~](q) expansion. fact that 

The fact that(A~Bo) ~ 0 can be explained by assuming that the contrib- 

utions of the loss and gain terms just cancel. This is the case if 

R o is time reversal invariant. The combined behaviour of~=~R~) o 

under parity and time reversal will then result in the polarizations 

odd in ~ being absent. 

This gives an answer to the historical problem of inverse collis- 

ions in molecules with internal degrees of freedom. In a classical 

description one has, for spherical molecules, that for every collision 

(c I c2-~c ~ c~) one can find geometrical conditions such that the 

inverse process (c~ c~-~c I c2) takes place. This is in general no 



452 

longer true in the presence of internal degrees of freedom. 

shown in fig. 18 where a-~alwhile a'will never result in a. 

This is 

> - 0 P'--..----- 
a a' 

~ 0  
a' a 

Fig. 18. The problem of inverse collisions. 

From the absence of polarizations odd in ~ one can conclude that for 

diatemic molecules the assumption of the existence of inverse collis- 

ions is a good approximation. In a more general forumulation: the 

collision operator is nearly self adjeint:~$~B~_B~A)o @ 

One can further pose the question of in how far a perturbation 

treatment, in which one writes R o = Rspherica I + ~ Rnenspherieal , is 

a promising approach. To investigate this we compare~(2@ with~(02). 

In such a perturbation approach6(02) will be of the order ~ and one 

expects~(02) gg ~(20). This is in general not the ease as is shown 

in ~ table: 
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gas 

N 2 

~" (20) 6 (02)  

35.0 24 

CO 35.5 33 

CO 2 52.7 69 

An exception is formed by the hydrogen isotopes. Indeed here the 

combination of small nonsphericity and large rotatioml level split- 

ting makes ~(02) ~ 6(20). This is shown in the next table which 

g±ves the situation at room temperature. 

H 2 

HD 

D 2 

g(2o) 

18.7 

18.7 

18.7 

6(02) 

0.49 

2.3 

0.91 

One can safely conclude that a small nonsphericity approximation is in 

general poor. In contrast to this the off diagonal elements of R o 
are always small, see table : 

gas 

N 2 1 

CO 

HD 

g(02) 

2z~ 

33 

2.3 

2O 
6(02) 

1.5 

2.0 

0.29 

m,12oo. 
<IOOI ) 

z~.6 

4.3 

0.67 
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This last conclusion remains true even for the case of strongly polar 

molecules where 6(02) > 6 (20). The exceptional situation for the 

hydrogen isotopes has as a further consequence that 6(12) =@'D" In 

general~(12) will be of the order of ~(02) +~. This situation is 

illustrated in fig. 19 for CO (note that~ 0.8(~T). 

IOO 

~2 

5C 

~(;2) ~ i , I I 

I$(o21 

~(2o) 

10×~ (o~) ~ 
o -  

i I J I J 
T I00 200 K 300 

Fig. 19. ~(I~, ~(0~, 6(20) and ~(~) for CO as a function 
of temperature. 

Further conclusions on the properties of the effective cross sections 

are related to the window that each of the cross sections has on the 

collision processes. It is immediately clear that diagonal cross 

sections involving only ~ i.e. 6(02) are only sensitive to collisions 

in which ~ changes in direction (Amj J 0). One can further show that 

in the lowest order DWB approximation the coupling cross section 

~(~) is caused by energetically inelastic processes ] 0). All 

the diagonal cross sections involving W are of course also sensitive 

~#1200~ contains terms of first order in to changes in ~, while also~<lOOiJ 

the non-sphericity arising from such collisions. This has an import- 

ant consequence in testing molecular model calculations. It is far 

more difficult to fit both magnitude and position of the field effect 

on ~ than it is to fit the same quantities for~[3] This is illust- 
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rated in fig. 20. 

21 

TJ~. 10 I ~'-5S== . . . .  

10 -$ H I P  10 ° ]01 Qrb. units 10 L 

Fig. 20. Comparison between theory ( ) and experiment 

lli s s I and ~2- for the case of hard 

In a review article a few years ago we wrote: "The study of 

the field effects can introduce new perspective (in the study of 

nonspherical molecules) since it not only ~lows more collision in- 

tegrals to be determined, thus increasing largly our source of data, 

but it also permits the relevant collision integrals to be obtained 

with good absolute accuracy. In addition, the results can easily 

be checked for internal consistency and the measurements can be per- 

formed over a large rmnge of temperatures without too much difficulty. 

For these reasons, it is to be expected that a wealth of new information 

on inelastic collision integrals will become available in the near 

future. Hopefully, this will contribute greatly to a satisfactory 

description of the interaction between polyatomic molecules and the 

way this is reflected in the nonequilibrium behaviour of polyatomic 

gases" These hopes are by now fulfilled in so far as the collision 

integrals are concerned. Snider will discuss in his lectures the 

state of our knowledge of the connection between the collision in- 

rentals and the interaction between nonspherical molecules. 
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V, FIELD EFFECTS IN THE RAREFIED GAS REGIME 

Introduction 

While in most of the work discussed so far the experiments were 

performed with a well defined plan in mind, the thermomagnetic torque 

was discovered by accident. It was present as a large spurious effect 

in measurements of the Einstein-De Haas effect, where one uses the 

conservation of angular momentum to determine the angular momentum 

associated with a magnetic moment in the following way. (see fig. 21) 

TIc 
~ t o r q u ¢ ~  

///////////. 

4 ..... T 

. . . . . .  T +  & T  

Fig.21. Schematic diagram of Scotts apparatus. 

A sample is suspended from a torsion wire inside a solenoid. Upon 

reversal of the sign of the magnetic field the change in magnetisation 

of the sample is accompanied by a change of the direction of the an- 

gular momentum of the spins. Because of the conservation law this 

gives rise to an equal and opposite change in the angular momentum 

of the sample as a whole. So the sample starts to turn till the 

torsion of the suspension wire compensates for the acquired torque. 

During such measurements, Scott at General Motors Research Laboratories 

was troubled by a spurious effect that caused a shift in the zero point 

of his torsion pendulum by an amount that corresponded to a time- 

independent torque many orders of magnitude larger than the value caus- 

ed by the Einstein-De Haas effect. The origin of this torque was not 
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understood but as it was constant, one could easily correct for it. 

In building a new set up in 1963, Scott and Sturner discovered that 

the torque was related to the fact that the sample was always slightly 

heated by the magnetizing coil: it was absent when the sample was at the 

temperature of the surrounding vessel. They found furthermore that 

it was also related to the gas residue in the evacuated surrounding 

vessel. Systematic investigations by Scott, Sturner and Williamson 

eli resulted in the following picture 

(i) The T (H) curves behave at constant p approximately 

H 
like 

1 + aH 2 " 

(ii) The torque is odd in the direction of the temperature 

difference, and of the magnetic field. It depends further 

on the sign of the rotational g factor of the gas. 

(iii) The torque disappears with increasing pressure, bu~ the 

behaviour as a function of P is rather complicated. 

(iv) The magnitude of the torques is many orders larger than 

the angular momentum content of the molecules hitting the 

surface. 

The overall behaviour of the Scott effect suggests that it is related 

to the phenomena discussed earlier in dilute gases. It can however 

not simply be a transport of internal angular momentum in a temperature 

gradient and magnetic field as this would be far too small. Its dis- 

appearance at higher pressures suggests that it is a property of the 

rarefied gas regime. In this pressure region the mean free path has 

become so large that in transport phenomena macroscopic quantities 

start to vary rapidly over a mean free pat h . Under such conditions 

contributions to the transport coefficients occur, that are character- 

ized by an 1/p behaviour. The situation is, however, complicated by 

the fact that superimposed on these effects there will be the results 

of the mean free path becoming of the order of the dimensions of the 

apparatus. This will give rise ~o so called Knudsen corrections 

that decrease the measured torque. Only after very carefully correct- 

ing for this effect,is the true behaviour of ~ (p, H) obtained (see 

Burgmans and Adair ~2]). Such a corrected result is shown in fig. 22. 
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Fig 22. ~P versus H ~T ~ for H 2 at room temperature. 

Levi et al. C3] were the first to show how in the presence of 

a magnetic field the Maxwell stress caused by a~T gives rise to torque 

To get some insight into the behaviour of transport properties 

in the rarefied gas regime, we will briefly outline th~ situation 

with respect to the Maxwell stress for a monatomic gas. We start 

with the Boltzmann equation in the steady state: 

• F ~  = c  ( f  f l  ) . 

We write for f: 

f : fo (1 + e~ (1) +~q2) + ...) . 

In zeroth order we get 

= o fo 0 c (fO f ) , : Maxwell distribution . 

In first order the equation becomes 

~_ . ~[fo :-n R e T(1) 

-n R o ~(l) 
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1 T (1) = - ~ A -  I T  

(2kT]~ --~--. (W 2 - ~) ~ = n R o ~ . 

The second order equation becomes 

(C__ . V..f O) ~ ( I )  + f0 c . V {  I )  =-n R o ~(2)  + c (fO fO ~ ( I ) ~ i ( I )  ) • 

Now we will limit our consideration to She case q ~<l, so we 
qrandom 

neglect (~(1))2:: (~T)2 . Under such conditions it is still possible 

that_Vlrvaries rapidly over a mean free path, i.e., it will no longer 

be possible to neglect ~ T and consequently terms containing ~(1) 

should be taken into account. Under these conditions the second 

order equation becomes 

c .V~ (I) = -n R~ ~(2) . 

(Terms with Vf0 ~(I).~ (~T) 2 are again neglected). This is known 

~l): 1 and Ro~ n O as the linearized Burnett equation. Note that as : ~ , 

1 "I one has ~(2):: -~ corresponding to a ~ contribution" to the 
n 

transport coefficients. 

We see further that we get ~<2)" ~ in terms of -- "~l), i.e., in terms 

of the solution of the first order equation. For the second order 

transport coefficients this statement implies that they can be ex- 

pressed in terms of the first order transport coefficients. The Max. 

well s~ress corresponds to the ~(2) contribution So the pressure 

tensor. In this way one obtains 

2'w~ nR 

f 
: n~ n [~ ~) , ~]~ n~ n[~, 1,(~)3 
= nkT I f O  B R o ~(2) d£ 

c • ~ r {  l )  = -n  RO~(2) [ =-~:m fo #_o. v__~(l) d 2 . 
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One h a s  ~ ( I )  = - ~ ' A  . ~ ' T  

keeping only ~T, one obtains 

"~(2)  f fo I I  = km __s i • ~ m  . i d ~  . 

The macroscopic equation reads 

IV = 2 7  ~ . 

Combination gives the microscopic expression for ~ . 

in first Sonine approximation: 

• Neglecting terms like ( ~ m )  2 a n d  

We have further, 

A = al ( w2 )_w s = b lw_w 

~ = n ~ 2 ~  k a I ~ = ~ nkT b I 

Using these expressions we obtain: 

I This is known as the Maxwell stress coefficient. Note that "~. 
as was to be expected• Theory shows further thanV~T gives no 

contribution to ~ if no gas flow is present. It was shown by Levi 

et al. [4,5] that for a gas of rotating molecules the expression 

becomes 

'~ 2 ~trans 1 
? = ~  n~. .  ' 

where ~trans~ is the coefficient corresponding to the contribution 

of the translational degrees of freedom to the energy transport• 

Note that in the lowest order Sonine approximation only the trans- 

lational heat flux is coupled to the pressure tensor. Retaining only 

the simplest angular momentum polarization: (~.~) ~ and ~ ~ Levi 

et al. solved the Burnett equation ~.in the presence of a field. 

will now become a fourth rank tensor~cUntaining both even and odd 

in ~ . We are here not interested in the even in ~ components as 

they will be very difficult to measure. The situation for the odd 

components is more favourable. The expressions for these coefficients 

in terms of the first order ones become rather complicated mainly 

because of the complex structure of the energy transport in a gas 

with internal degrees of freedom° They become much simpler if 
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we consider a hypothetical case where one may neglect the transport 

of internal energy. In this case the contributions contain four 

parts: one proportional to E Str and having also the field dependence: 

(I + ~  +Z 2~ 2 ) a second of the type~L~ ~ and behaving 

like Q- i.e. ~ "¥ ~ The last two contributions are of 
~2 I + 4~ 

l 

a mixed nature, they are proportional to ~tr~.~ . These contri- 
H butions occur in two differemt ~ regions, one with characteristic 

parameters ~ and 2~; and another with the parameters: ~ F and 2~q. 

This is a structure one ~ould intuitively expect from the field free 

behaviour of~ ~ ~ trans~ For the case of a torque on a cylinder with 

radius a and height one gets: 

with 

= -2rla2h ~r@ 

~r = 2 ~r~ d2m 
7 

The logarithmic temperature field between coaxial cylinders gives: 

T ~n R /a . T (r) = T (a) + i . ' T  

In this way we get for the torque: 

$~h AT " 
~n ~/a T ~r9 

r~ is a combination of two Cartesian tensor components of ~ appro- 

priate to the cylindrical symmetry. The full expression for the 

field dependent torque reads 

AT - + 

c' 1 = ~ B + e l f - ( 2 1 ~ )  + c2 f  (2~1~) " 

A and C 2 corresponds respectively to the pure ~tr and p~ terms and 

B and C 1 resp. to the cross terms in the simplified situation discussed 

earlier. They are in general rather complicated expressions in the 

first order field free and field dependent coefficients. The contri- 

bution at is the dominant on~, so the maximum in torque will occur 

near to the one in the ~2 curve. A detailed comparison is hindered 

by the fact that there is also a contribution of a boundary layer 

effect to the Scott torque. While in the bulk VT does not couple to 
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2 , this is no longer true near a wall as there the gas can no longer 

be considered as an isotropic system. In monatomic gases one has, 

for example, the phenomenon of thermal creep: i.e. a gas flow along 

a boundary in the presence of a temperature gradient along the wall. 

Consider a gas in which there is a temperature gradient parallel to 

a wall that is at a constant temperature (see fig.23) 

VT 

Fig. 25. Schematic diagram illustrating" 
the occurrence of thermal slip. 

Let us assume that the accommodation coefficient for translational 

energy is equal to 1. Thus a molecule hitting the wall leaves the 

surface with a kinetic energy corresponding to the temperature of 

the wall and in a random direction. Let us now compare the effect 

of this accommodation on two molecules coming from resp. a and b. 

,~will both leave the wall with the same average energy, but as 

mv a < ~ m-~w2 v b they gave off a different amount of momentum to the 

wall in this process. Consequently there is a net loss of momentum 

by the gas layer near the surface in the -VT direction. This will 

cause the gas to move in the +VT direction so that its velocity is such 
m 

that the ordinary viscous friction will just make up for the momentum 

lost in the accomodation process. Thus we will have a flow of gas 

from cold to warm: thermal creep. This flow will under these 

conditions exert no force on the wall therefore it is also called 

thermal slip. While monatomic gas slip phenomena have to do with 

the accommodation qf translational energy at the wall, in polyatomic 

gases also the accommodation of internal energy and ~e behaviour of 

the internal angular momentum in its interaction with the wall has to be 

taken into account. Such bomndary layer phenomena can give a 

contribution to the Sco~t effect as was shown by Levi and Beenakker 

[3] and by Waldmann 66]. A discussion of the theory of these effects 

is, however, outside the scope of these lectures. For our discussion 

here it is sufficient to realize that it is possible to devise a set-up 
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where .~T is negligibley small so that only slip effects occur. Such 

an experiment was suggested by Waldmann and performed at Leiden by 

Hulsman et al. [7]- From the results of these measurements it is 

possible to calculate the slip contribution to the Scott torque. It 

appears to be of opposite sign to the Maxwell stress,gombinabion of 

slip and torque measurements allows then a comparison with calculations 

of the Maxwell stress contributions. 

120 ' [ ' '''"I ' ' ' ''"'I 

N2 
loo 

3 0 0 K  c l y n e c m  t o r t  - . . . ~  

/ T P 1 0  6 -- 

O |  I I I ~ l ~ J l l  I I I I l l l l  

102 Hip 103 Oe l t o r r  10~ 

Fig. 24 The boundary-layer (or slip) contribution to the 
thermomagnetie torque for N o as found from the experiment, 
the total torque as measure~ by Adair and co-workers and 
the combination of the two yielding the experimentally 
determined bulk contribution. The dotted line gives 
the bulk contribution as calculated from the expression 
given by Levi et al. The shaded area around the calculated 
curve reflects the uncertainties in the used cross section 
values. 

Fig. 24 gives the results for N 2. It is, however, still too early 

to decide whether the discrepancies between theory and experiment 

are significant. 

The transverse viscomagnetic heat flux 

When in the Burnett regime a gas flows in such a way that its 

velocity has non vanishing second spatial derivatives (as, for example, 

in ordinary Poiseuille flow) a heat flow will be present. In a way 

similar to the derivation of the expression for the Maxwell stress 
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one gets at uniform temperature 

g v. . 

This heat flow is, however, difficult to observe in the absence of 

a field~ since the heat flux is parallel to the flow and can hardly 

be separated from convection and other uninteresting, but much larger 

phenomena. In a magnetic field, however~ the heat flux has a trans- 

verse component which can be termed (transverse) visco-magnetic heat 

flux. 

Fig. 25 Schematic diagram for measuring the 
viscomagnetic heat flux. 

In the arrangement shown in the fig. 25 one will have a transverse 

temperature difference. As shown by Levi etal. [51, its magnitude 

is directly related to the dilute gas transverse pressure difference 

by the relation 

~y ~ (~) ~ ~y 

here ~ (~) is a slowly varying function of the field with a value 

around .5. So far no experiments in this direction are reported. 

Let us end this discussion by again underlining the importance 

of the field effect in the rarefied gas regime as being one of the 

very few methods that give data that are not submerged in larger 

dilute gas contributions. Through measurements of the Burnett 

coefficients one has a tool for the direct verification of the kinetic 

theory in this regime. Other applications are in the study of bound- 

ary layer phenomena and in that of Knudsen effects. Recent theoret- 

ical work of the Erlangen~39]and the Moscow group [lO, ll2 are in 
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this respect very promising. 
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I. INTRODUCTION 

Professor Beenakker has already given in his lectures [IJ a 

general introduction to the field dependence of gas transport coeffi- 

cients. In those lectures he has given some of the history of these 

effects and of their interpretation, as well as the present status of 

what experiment tells us about what the molecules are doing in these 

processes. I will briefly sketch some of the theoretical developments 

as I see them. 

Modern theoretical calculations of these effects began in 1961 

with the work of Kagan and Maksimov [2] , using a classical Boltzmann 

equation and a model collision operator. During the next 8 - 9 years, 

the model dependence was eliminated and a general formulation in terms 

of quantum mechanics was developed [3J. The central theme that dominated 

this development was an emphasis on statistical mechanics and a minimal 

role of individual molecular behaviour. By statistical mechanical em- 

phasis, I mean the ingrained attitude of statistical mechanics: if 

you don't know what to do, take an average. The only other concept 

that was retained, was a proper treatment of group theory. This meant 

that the dependence of the density operator on the velocity and angular 

momentum directions was carefully considered, but everything else (in 

particular velocity and angular momentum magnitudes) was averaged. 

From the directional dependence of the experimental observations, it 

was deduced that the density operator (or distribution function) of 

the gaseous system has only a limited dependence on the directions 

of the internal molecular angular momentum. As Professor Beenakker 

has discussed in his second lecture, only certain "polarizations" 

are important. Moreover, the theoretical calculations of this period 

all involved the ratio of Larmor to collision frequencies, so that 

the experiments should scale to be functions of H/p, and this was 

usually observed. 

Yet some things did not fit, 02 being the principle counter- 

example. Improved experimental accuracy showed that the H/p scaling 

just did not workX This is easily traced to the fact that there is an 

electron spin angular momentum as well as rotational angular momentum, 

and the strenTth of the coupling between the two must be taken into 
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account. Essentially, this can be interpreted as saying that there 

was too much averaging. The treatment ~] of 02 in 1970 began a 

trend to re-emphasize the role of individual molecular behaviour. 

An emphasis on molecular motion necessarily complicates the 

treatment (since more quantities must be taken into account), while 

averaging simplifies the amount of calculation (fewer quantities). 

It is also possible to lose the description of experimental detail 

with too much averaging~ while too detailed a description can easily 

make the calculation intractable. Clearly some compromise is required. 

The "Qualitative Picture" is [5] an outgrowth of the detailed 

treatment of 02 . Besides giving a simple picture by which the field 

dependence of gas transport properties may be understood, it has the 

advantage that it exactly parallels the formal solution of the Boltz- 

mann equation and can also be immediately put into correspondence 

with the formal development that results from any treatment based on 

time correlation functions. Because of these associations, it serves 

as an excellent guide both to what is happening in the gas and as to 

what must be taken into account in any calculation. The first three 

lectures will describe this "Qualitative Picture" and apply it to a 

discussion of the field dependence of the viscosity coefficient. 

The qualitative picture over-emphasizes the role of the internal 

state energy level structure. It is also necessary to know something 

about the collision processes. I will discuss what I consider is the 

general Boltzmann equation [6] (having only binary collisions) and 

some of its properties in the fourth lecture, while in the final 

lecture I will discuss some of the results [7] that can be obtained 

from an organization and approximate evaluation of the collision 

rates. The role of collisions can be divided into two classes, the 

relaxation rates and the production processes. The latter are defined 

as the collision processes coupling the velocity and angular momentum 

directions. While in the decade before the "Qualitative Picture", a 

small number of relaxation times and production rates were used in 

explaining the experiments, the detailed dependence of the collision 

rates on, in particular, the angular momentum magnitude j, has recent- 

ly led to a much better agreement between data obtained from different 

experiments. Professor Beenakker has discussed [I] some of this work. 

I will discuss the j dependence of the collision processes from the 

viewpoint of the Distorted Wave Born Approximation, and this does 

seem to be in agreement with at least some of the experimental data. 
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II. THE ROLE OF FREE MOLECULAR MO~ION 

2.1. QualStative Picture 

Elementary notions of gas phase transport are based on the mean 

free path picture. In this, transport occurs by free motion between 

collisions and the collisions act as disruptive processes for the 

transport. It is also part of the usual treatment, that collisions 

occur sufficiently often and that the mean free path is short enough~ 

that the gas may be considered to be in local thermodynamic equilibrium 

Knudsen effects occur if this latter condition is not fulfilled and 

I will not discuss such effects. 

To calculate the transport due to a mean free flight, it is 

customary to visualize two planes lying a mean free path "~" apart, 

with their common normal direction Q (a unit vector) along the direct- 

ion of transport. The planes have averages, (B) and~B) + A<B~, of the 

molecular property (quantum mechanical observable) B being transported. 

Since a third of the molecules can be thought to be moving normal to 

the planes with an average speed ~, and since there are n molecules 

per unit volume, the amount of B transported from one plane to the 

other is 

B transported = ~ n~<B> = ~ n~ ~ (d <B>/du) . (i) 

Expressed in terms of the gradient d <B>/du of B, this gives a trans- 

port coefficient 

~ = ~ n ~ '  = ~ n~2~. (2) 

which is more conveniently expressed in terms of the mean free time 

~ ~/~ rather than in terms of ~ . Most transport coefficients 

(the Diffusion coefficient is the major exception) are density inde- 

pendent because of two compensating effects. With increased density, 

more molecules are doing the transporting, while each molecule travels 

a smaller distance because of the increased frequency of collisions 

(mere disruptions)~ mathematically this is expressed by relating ~-i 

to an effective collision croSs-seotion~aecording to 

z-i 
= n <V~rel~__- (3) 
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where <V}rel is the average relative speed of two molecules. For 
-2 

the viscosity, c should be replaced by the root mean square speed, 

compare Eq. (48). 

It is a tacit assumption in the derivation of Eq. (2) that a 

molecule, on moving from one plane to the other, decreases the amount 

of B in one plane by ~<B> and increases the other by ~(B>. That is, 

B is a constant of the free motion and there is thus a transport of 

~<B> between the planes. This is true for mass, momentum and energy 

but not true for most properties - in particular for an angular 

momentum (vector) ~ in a magnetic field H = H~ directed, for con- 

venience of presentation, along the ~ axis. If, in particular, the 

average angular momentum <~> is directed along the ~ axis in one 

plane, a molecule having this average angular momentum will have, at 

time t later during its free flight, the precessed angular momentum 

(t) cos t+ sin (4) 

where &2 is the Larmor precession frequency -~H, ~ being the gyro- 

magnetic ratio. For planes a distance "~" apart, the angular momentum 

reaching the second plane has the same initial magnitude but has been 

rotated by an angle ~r around the field direction. Thus the transport 

of angular momentum should be modified by the directional factor in 

Eq. (4), in order to take into account the precessional motion. Note 

firstly that these effects depend on direction, for example, the 

component of the angular momentum does not precess, but secondly, 

that if ~ > > I , then the exact value of ~ is very important to 

determine exactl[ what direction the angular momentum has when it 

arrives at the second plane. Such a sensitive behaviour is contrary 

to the statistical nature of the treatment. There is an easy remedy 

for this latter defect once it is realized that ~ is a mean free 

time and after all, different molecules have different free times 

between collisions, and hence different amounts of precession. One 

should take the average effect of the precession obtained, by 

averaging over the distribution of free times. Elementary arguments 

lead to a Poisson distribution [8] 

P<t) = ~-i exp (-t/~) (5) 

of free times which implies that an ~ directed angular momentum in 

one plane give rise to a resultant arriving angular momentum of 
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(J>arrival =(Jx > leaving i~(t) [~ cos ~t + ~ sin~t] dt 

] [ x 
= <Jx~leaving I +W~ ~ I *~¢~ (6) 

The averaging of the precessional motion does two things. First 

of all, the total magnitude of the arriving angular momentum is less 

than that leaving the first plane according to 

2 2 ]'la 
l<~arrivall =~J~) art. ÷ <Jy> art. 

= I ( Jx  ) leavingl ( 1 + ~ 2 T 2 < 1 / ~  (7) 

while secondly, the effective precession angle 

~prec. = arctan ~ 

is 
prec 

(8) 

and has a maximum of 90 ° in magnitude. These effects are demonstrated 

in Table I. 

TABLE I 

EFFECT OF AVERAGING THE PRECESSION 

4~) leaving = 

~T ( Jx ) art. 

0 1 

i % 

i0 i/i01~I0 -2 

(unit angular momentum in the ~ direction) 

< Jy> arr. I ~J > arr. l ~prec. 

0 1 0 

'i~ (2)  - ' ~  ~5 ° 

_Jl; _ --i i0/i01~i0-i (i01) ~io 8~ ° 

0 0 0 900 

I could spend a great deal of time discussing the implications 

of this simple result but let me comment at this stage on only four 

things: 
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(i) The precessional effects are governed by the quantity ~ 

which is the ratio of Larmor to collision frequencies and thus expe- 

rimentally dependent on the ratio N/p, first observed by Senftleben 

in 1930. 

(ii) The direction of precession depends on the sign of ~ , hence 

on the sign of the gyromagnetic ratio. This has been used to experi- 

mentally [9] verify the theoretically predicted signs of ~. 

(iii) The decrease in angular momentum magnitude is not a re- 

laxation effect but rather due to a randomization or dephasing of the 

angular momentum directions. We prefer to call it "phase randomization" 

This association arises from the mathematical treatment which I will 

discuss presently. 

(iv) In this picture, the collisions are field independent and 

merely act as disruptions of the transport processes. This is in 

contrast to the earlier literature (in particular Gorter's 

picture [10] ), in which stress is given to the orientation of the 

colliding molecules. The present picture is in agreement with the 

formal methods of treating these phenomena and the rationalization 

of field independence of collision processes is usually based on the 

fact that the Zeeman energies associated with the Larmor precession 

are negligible in comparison with the thermal energies that are 

available during collisions. 

2.2 Generalization and Mathematical Formulation 

For dilute gases, all observables of interest are one-molecule 

observables B and their expectation values are obtained by tracing 

with the (time dependent - that is - Schr~dinger picture) singlet 

density operator p(t), namely 

B > (t) = ~r ~(t) B . (9) 

Neglecting collisions for the present discussion, p (t) evolves in 

time according to the von Neumann (or quantum Liouville) equation 

Here ~ is the hamiltonian for one molecule and f is the super- 

operator [i~ (that is, operator acting on operators) defined as the 

~/~ with", namely "commutator of 
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fA - ('WA - AW )/~ ( l l )  

The insertion of ~ -I at this point is convenient in that ~ now has 

the units of inverse time. 

If one now visualizes one plane of our gas as having expectation 

value <B >, then a molecule leaving this plane with this value of B 

will arrive at a plane a mean free path away with <B> modified by 

free motion according to 

f: oP(t)<B>(t) dt = t) ~r p(t) B dt 
@ ! 

= 17(t ) Tr [exp (-i:t)e] B dt 

= IP(t) Tr # exp (i~t) B dt 
! 

= <(1 - i£T )-i B>. (12) 

I will thus interpret the factor (I - i~T )-i, which arises in cal- 

culating transport properties by formally solving the Boltzmann 

equation, as arising from free motion between collisions. Here, I 

first want to discuss the properties of this "phase randomization 

factor". 

It is convenient to consider operators which are eigenoperators 

of f . If Im> , In> are eigenvectors of ~, with energies E m and 

In respectively, then ~mn = I m)(~nl is an eigenoperator of ~ with 

~-I ~n ) according to eigenvalue &)mn = ( Em - 

2~mn = ~-i [~I m>( n~- Im>( nl~] = ~mn ~mn " (13) 

Any observable can be expanded in terms of this set of operators 

~mn ] The expectation value of ~mn is the matrix element 

~mn~ = Tr P~mn = ~n}~ m~ = ~nm (14) 

of the density operator, so that free motion modifies the matrix 

elements of ~ according to 

Pnm = ~mn>'~ <(I - i~)-l~mn ~ = (i - i~mnT )-ifn m. (15) 

Note firstly the order of indices, ~mn versus Pnm and secondly 

t h a t  i f  m = n ,  t h e n  gO = 0 a n d  t h u s  t h a t  t h e  d i a g o n a l  e l e m e n t s  
n n  
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of ~ are unaffected by the free motion. If the energy level spacing 

is large enough so that ~mn ~ ~> 1 for all n f m, then 

l(1 - iWmn~) -1Pnm I = [l~ (Wmn~)2 ] i~nm ~ n~m 0 (16) 

and the density operator becomes diagonal. This is the usual state- 

ment of phase  r a n d o m i z a t i o n .  This  i s  e s p e c i a l l y  emphas ized  i f  t he  

"initial" p is a pure state with different energy components, 

Pa :la><al w h e r e  

la> = Z Im) c m . (17) 
m 

Now free motion modifies Pa according to 

Pa-~ ~ Ira) °m (I - i~nm~) -I C*n (nl 
mR 

2 
~'$--~ m~l m) Icml < ml (IS) 

with the extreme case given when ~--~ and all states are non-de- 

generate. This is a diagonal density operator and is necessarily 

mixed rather than a pure state. The off-diagonal elements of p~, 

in the m representation, involve phase relations between the Cm'S 

(another way is to say that these are coherences). The free motion 

randomizes these and leaves only the incoherent part of the density 

operator, namely the diagonal part. The intermediate stage of phase 

randomization,when ~mn T is neither 0 nor very large, will be 
referred to as partial phase randomization. 

Now the adjoint ~mn = .~m of ~n has the negative frequency 
W = - W and the commutator nm mn 

[~mn' ~m~n]- = qm " ~nn (19) 

is a constant of the (free) motion. The time evolution of ~mn 

involves an interconversion of the hermitian and antihermitian parts 

of ~mn' or of their expectation values 

-_- e Pmn+ Pnm ) Pmn ~ ( I i ( Pmn - Am ) (20) Imn = - ~ 
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The average effect of free motion is to lead to the relation 

IPmnl f f+ (#4~') f-(~'~)~/Pmn / 
= ( 2 l )  

~Zmn/arrival ~-f' (~,) f+(~¢)# Tmnlleaving 
in terms of the Lorentz-Debye absorption and dispersion line shapes 

f+(~) [1 ~ (~ ~)2] -l = and f- (~") = ~t[l+ (~¢")2] -1. (22) 
This is the generalization of the angular momentum, Larmor precession 

frequency case that was considered at the beginning of the discussion 

of the qualitative picture, see Eq. (6). Since J~. and J_ are eigen- 

operators of the Zeeman Liouville superoperator, Jx is the hermitian 

and Jy the antihermitian part of J@. It is coincidental to the phase 

randomization that g and J have directional properties, but of x y 
course of fundamental significance experimentally. What must be 

stressed is that the effects of free particle motion are very far 

reaching and are not in general connected to any directional proper- 

ties of the gas. 

To continue the discussion of angular momentum, consider a quan- 

tum mechanical pure state having the angular momentum pointing along 

the G direction given by the spherical coordinate angles e and ~. 

It is easily shown that the c m of Eq. (17) are 

Cm=[(2J)!/(J~-m),(J- m)~ (sin~@)J-m(cos@e)J¢mexp (-im*~ (23) 

in the equation 
J 

I J  = IJ m> o m (e ,  ~ ) • (2~)  m=-J 
Complete phase randomization leads to 

#phase random. = ~ IJm> }Cml2~ Jml 
m=-J 

(25) 

with angular momentum expectation value 

L fphase random. 

J 2 

= mjCml 
m=-J 

= J cos ~ . (26) 
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That is, only the component of the angular momentum parallel to the 

field axis has remained after complete phase randomization; this is 

the only part that has zero frequency. 

2 -3- Implications 

Two important consequences are obtained from this discussion. 

First, free motion and partial phase randomization can give rise to 

external field and pressure dependent phenomena, as is exemplified 

by the Senftleben effects. This is discussed in my subsequent 

lecture. Secondly, if the separation of two energy states is large 

compared to ~/~ , then (off-diagonal) matrix elements of ~ between 

these two states will be relatively unimportant. This has very 

important consequences in any theoretical calculation, for it serves 

as a guide to what terms one can ignore and so increase the efficiency 

of one's calculation. 

III. FIELD DEPENDENCE OF THE VISCOSITY 

The discussion here is limited to situations in which the Navier 

Stekes equations and the Chapman Enskog method are applicable. This 

means that the gas is, first of all, dilute enough that only binary 

collisions are important, and secondly, dense enough so that there 

is a sufficient collision rate to maintain local equilibrium. Lack 

of the first would mean that there is little if any free motion and 

we could not use the Boltzmann equation as the starting point, while 

lack of the second means that a separation into kinetic and hydrodyna- 

mic effects is not possible and consequently that the properties of 

the whole gas must be solved all together. 

Between these two extremes there is a region in which we can 

treat the gas as linearly perturbed from local equilibrium and, 

because of this linearity, the results can be compared with those 

of linear response theory. 
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3.1. Formal Expression for the Viscosit~ Coefficient 

Local equilibrium means that in each macroscopically small part 

of the gas, the properties of the gas are describable in terms of a 

local temperature T (~, t), number density n (~, t) and stream 

velocity ~0 (~' t) at position ~ and time t. Correspondingly, there 

is a local equilibrium (Maxwell-Boltzmann) density operator for the 

system 

f(O) = n exp (-W 2 -~int/kT) . (27) 
(2~ mkT) 3/2 Q 

Here k is Boltzmann's constant, Q is the internal state partition 

Tr exp (-~nt/kT)~ defined in terms of the internal function q 

state hamiltonian ~int while ~ W is the reduced peculiar velocity of 

a molecule 

= (m/2kT) a/~ (~ - ZO ) E (m/2kT~/; Z " (28) 

Actually, as given, f(O) is a density operator in internal states 

but a Wigner [12] distribution function in the translational degrees 

of freedom, see also part IV of this set of lectures. One has the 

immediate relations (2 = mz) 

n(~, t) = Tr If (O) d 2 (29a) 

~0 (£, t )  = n - 1 T r  I X  f(O) d2 (29b) 

t )  km t )  Tr I ~ m V  2 f(O) d2 (29c) n (~, (~, = 

which also serves to define the normalization, the trace being over 

the internal states. It is also required that the true Wigner distri- 

bution function-density operator f satisfy these three equations, thus 

that n, ~0 and T are the local density, stream velocity and temperature 

Now f evolves in time due to the free motion of the molecules 

between collisions, and also due to binary collisions. This can be 

formulated as 

f+ v - ~ + i YY co11. (5o) 
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The form of the collision term is left unspecified at this stage 

but will be discussed in part IV. Otherwise, there are two types 

of free particle motion, one is the streaming due to the molecular 

velocities while the other is due to the internal state changes. 

Here ~is the Liouville operator, contrast Eq. (II), associated with 

the internal state hamiltonian 

2A = (~int A - A~int) t -I , (31) 

while the translational hamiltonian has led to the streaming term. 

Since particle density (consider only a one component gas), momentum 

and energy are collisionally conserved quantities, their expectation 

values evolve according to the equations of: 

continuity 

~n/ )t + V" (n ~0 ) : 0 ~ (52) 

momentum balance 

~(nm ~O)/~t+ V- (nm ZO ~0 + ~) = 0 (55) 

where ~ is the conductive momentum flux or pressure tensor 
t 

P : Tr Im ZX f dp 

f 

and an energy balance equation which I will not display. 

It follows from the form of the streaming term in the Boltzmann 

equation, that if f is position dependent (that is, the gas is inhomo- 

geneous), then f cannot be of Maxwell-Boltzmann form. Hence inhomoge- 

neities attempt to make f to be of non Maxwell-Boltzmann form, while 

collisions try to bring everything back to local equilibrium. A steady 

state is reached with f deviating fractionally from f(O) according to 

f = f(O) (l+ @ ) (35) 

and @ is linear in the macroscopic gradients, namely Vn, V~O and 

~T. In this approximation, the pressure tensor is given by 

= ~ u + "IT (36) 

where 
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is the viscous pressure tensor, also linear in the gradients, ~ is 

the unit second rank tensor, Uxx = Uyy = Uzz = l, all the other six 

components being zero and nkT is the local equilibrium pressure. 

A consistent expansion of the Boltzmann equation to terms 

linear in the spatial gradients leads to the equation 

X- 2[W~2): [- VVo] 2 [(9_ <) (w e_ ~) ~intc-T(~in~]v v0 

" ~ " . I "  ( -  V ~ n m )  -- ( ~ +  i f ) #  . (38) 

Here ~ is a linearized collision superoperator whose detailed form 

is discussed in part V while C v is the molecular heat capacity per 

unit volume. It should be noted that since both @ and the streaming 

term ~v - ~rf are linear in the gradients, there is no term in Eq. 

(38) involving ~ - V~ . In contrast, ~ is a free motion term that 

does not involve gradients so ~ @ is linear in the spatial gradients 

and does appear in this equation. The symmetric traceless part 

[...~) of a pth rank tensor has been used previously by Professor 

Beenakker in his lectures. This division of the dyad W W into 
traceless 

[W] (2) = W#- ~ W 2 U (59) 

and trace ~ W 2 ~ parts corresponds physically to the distinction 

between shear and bulk viscosity, while mathematically it is 

associated with the reduction under th~ 3-dimensional rotation group 

S0(3) to irreducible representationS3] of dimensions 5 and 1 respec- 

tively - note that of the 9 components in a second rank symmetric 

traceless tensor only 5 are independent. 

The formal solution of Eq. (58) is 

@ = (e. I- i f ) - i  x (#o) 

provided that the inverse exists. In general it does not, since mass, 

momentum and energy are null eigenoperators of both~ and ~. How- 

ever, within the requirement that @ does not contribute to n, ~0 

and ~ [~qs. (29) are satisfied by both f(O)~nd ~] the inverse 
(~+ i~ )-I exists in the subspace orthosonal to these oollisionally 

conserved quantities (usually referred to as the summational inva- 

riants). On dividing up the viscous pressure tensor, ~ of Eq. (37), 

into traeeless and trace parts, the former is given by 



4 8 3  

l'l "(2) = 2km mr ~ [~](2) f (O)~ 

= << (2) I ÷ > )  

,,,.,~ ( - V "  v a 

,,~2) . (_ V ~) (~1) 
q 

in terms of a fourth rank shear viscosity coefficient 

and second and third tensorsD ] £_<2) for the cross 
" I I  q 

effects between bulk and shear viscosities and between heat conduc- 

tivity and shear viscosity. These latter vanish in the absence of 

a field since the gas is then isotropic. Parity forbids a magnetic 

field to couple heat conductivity and viscosity but this coupling 

is possible in an electric field. Only the shear viscosity will be 

discussed further so only its detailed formula has been given. 

It is convenient at this stage to introduce the inner product 

of two operators 

<<AIH~ = mr ] A * t  n-: f(O) B % . (~3) 

This requires the operator adjointtand tensor transpose t of the 

quantity A so that this definition is general enough to treat tensor 

valued quantities A, B, which are simultaneously operators in internal 

state space and functions of velocity. However the form of inner 

product given assumes that A and/or B commutes with f(0) (as internal 

state operators) which can be shown to be sufficient for the present 

purpose but can easily be (and must be) generalized if this condition 

is not satisfied. ~he double kerfS} notation was, as far as I know, 

first introduced by Baranger L15] in pressure broadening studies. 

The quantity ~ [~](2)- is normalized in the sense that 

where E (2) is the fourth rank tensor which acts as the identity 

(projection operator) for symmetric traceless second rank tensors~ 

that is, under double-dot contraction (always of adjacent indices), 

any symmetric traceless second rank tensor ~(2) satisfies 
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E ( 2 )  : T ( 2 )  = T ( 2 )  ( + 5 )  

which requires in particular that E (2) is idempotent 

E (2) : E (2) = E (2) . (+6) 

This is sufficient information for its explicit calculation which 

implies that it can be written 

If 2= 0, this would be expected for a gas of monatomic molecules, 

and ~ -I is written as a collision time ~ , then the viscosity tensor 

is 

= nkT ~ E (2) ='~1E (2) (+8) 

and the shear pressure tensor is 

in terms of one scalar shear viscosity coefficient ~= nkTrg . An 

estimate of ~ , as calculated from intermolecular forces and binary 

collisions, is that i/~ is a matrix element of ~, namely 

or on contracting the tensorial indices 

which indicates a double-dot contraction between the two velocity 

tensors after calculating the matrix element of~ . The approximation 

made in going from Eq. (+8) to Eq. (50) is to demand the equality 

i 

l (52) 

which is an interchange of the order of taking the inverse and matrix 

element of~. That this is an excellent approximation (-~5% error) 

when calculating the viscosity of monatomic gases~ is well known~6]. 
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This is equivalent to a one-moment approximation to the perturbation 

function ~, see also the discussion by Professor Beenakker. 

Before ending this discussion of the formal expression for the 

viscosity~ I will make some connection with time correlation function 

theory. Within a dilute gas framework and a one-molecule picture, an 

observable evolves in time according to 

B(t) : exp [- (~ - i£) t] B(O) (53) 

which accounts for its free particle evolution (given bye), and due 

to collisions. Eq. (~2) for the viscosity can be recognized as the 

time integral 

~ = ~T 

= ~T <<(e -1 

I ° 
: ~ m  (~[~](2) (t) ~[~1(2) (o)> dt (5~) 

o 
of nkT times the autocorrelation function of --~'[~](2). The same 

result can be obtained if one starts from an N-particle picture and 

makes a binary collision expansion of the resulting resolvents. Note 

also the interplay of Heisenberg and SehrSdinger pictures with 

operator adjoints to get the phase factors correct. (~+ i2)-i 

appears in Eq. (~2)~ but (I - i~ )-I appears in Eq. (12). 2 is 

automatically a self-adjoint superoperator in the inner product 

defined by Eqo (%5), while to obtain Eq. (54), it has tacitly been 

assumed that ~is self-adjoint. This is not strictly valid~ as will 

be mentioned later. 

5.2. The Simple Case of N 2 in a Masnetic ' Field 

At room temperature N 2 can be considered to be in its ground 

electronic and vibrational state. On the basis that the nuclear 

spins are only very weakly coupled to the rotational states, these 

will be ignored. The remaining internal ~tate Hamiltonian is for 

rotational and Zeeman effects, and is written as 

~int = Bj (j + i) - ~ " ~t , (55) 
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where the possible consequences of centrifugal distortion, etc. are 

here ignored. As a matter of fact they would have only secondary 

effects. Since B{j)%-I~ 3 x I0 I~ sec -I for N 2 while the mean free 

time is roughly 6 xlO -13 sec. at atmospheric pressure, it is seen 

that any frequency associated with different j levels will be complete 

ly phase randomized at all pressures less than atmospheric. This 

means that ¢ may be accurately approximated as being diagonal in j. 

Now ~consists of two terms, one due to Bj (j¢ I) and the other 

associated with the Zeeman hamiltonian. If @ is diagonal in j, then 

the first part of~does not affect ~ , see Eq. (38), so that in the 

expression, Eq. (42), for the viscosity, only the Zeeman part, ~Z 

there is then the implicit requirement 
of ~ needs to be retained, but ~j(2)=@ be dia~onal in J magnitude. 
that (~ i~z)-i 2 [W](2~:[-V 

The important fact is that there is n_~o B dependence in the resolvent 

(~÷iZz)-I. If ~ is now approximated as an average collision rate 

i/~ times the identity, as in Eq. (50), then the viscosity tensor is 

given by 

~ : nkT~ ~<~[W](2) I (i % iZZ~)-I I ~ [WI(2)>> (56) 

which shows a phase randomization factor. Moreover, since ~Z is 

proportional to H and~ to #p, it is seen that the viscosity is 

dependent on pressure (or density) only in the combination of H/p, 

namely ~ (H/p). This should be contrasted to the possible dependence 

on H/p and B/p if the Bj (j, I) part of ~were present. The dependence 

on B/p has been eliminated on the basis of phase randomization! It is 

noticed that it is the large energy level spacings that are eliminated 

from the resolvent In contrast, the Boltzmann factors in f(0) Eq. 

(27), are insensitive to the small Zeeman energies and so the Zeeman 

term will subsequently be eliminated from f(O) This has the important 

mathematical advantage that now f(O) is field independent and hence 

isotropic, consequently the inner product, Eq. (43) is also isotropic 

and this makes (3-dimensional rotation) group theoretical arguments 

very simple. 

Although the deductions that I have stressed are correct, the 

simple procedure adopted in getting these from Eq. (56) just doesn't 

work[ In Eq. (56) • is a constant and -- ~Z~] (2) = O, so the phase 

randomization factor vanishes and there is no field dependence of 

the viscosity! The replacement of~ by ~ is too naive! It is impor- 

tant that the velocity and internal state spaces be coupled and this 

can only occur by means of collisions. A perturbational expansion in 

this coupling appears to be consistent with the small (0.5 - 1%) field 
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dependence of the transport coefficients and more detailed deductions, 

arising from a perturbational treatment, also appear to be borne out. 

Thus ~ is separated into a part ~d diagonal in either velocity or 

internal state space, and a non-diagonal part ~n d that causes the 

coupling. An exact prescription about what separation is physically 

significant, has not, and most likely can never, be precisely made. 

The division that seems to work is based on the directional independ- 

ence versus dependence, of the internal state angular momenta. There 

is obviously a great need for a better understanding of collision 
processes in order to improve our present understnading of this problem 

First order terms in ~nd do not contribute to the viscosity 

since one must go from velocity space to velocity space. Hence to 

second order in ~nd, the viscosity tensor is 

= nkT <<~[~1 (2)I ~ d-~ ~d-l~nd (~d t i~) -1 ~ nd ~d -1 1 ~ [~ ~(2) ~> 

= ~ E(2)+A~mnt (57) 

where ~ = nkT ~ i s  the v i s c o s i t y  due to pure v e l o c i t y  p o l a r i z a t i o n s  
following Eq. (~8), while the contribution from internal state 

polarizations is 

~nt= nkT <<{2~ Iiwl(2blRd-l~nd(ed ÷ iz)-l~nd IRd-ll ~ W (2)>) 

2 ~B int I Bint>> • = nkT~ ~ T ,(~ ~" i~)--i I (58) 

There are several technicalities that have been introduced here. 

First, when acting in velocity space, ~vanishes so that only~ -I 

appears when acting on ~[~](2). Second, it is ~d -I rather t~an 

~-i that is approximated by.when acting on ~ [~](2). Third, the 

internal state polarization is defined by 

= 1 p [W] (2) (59) 

with @ to be a positive normalization constant, so that 

<< Bint I Bint>) = E (2) . (60) 

@ thus plays the role of a coupling constant between internal state 

and velocity polarizations. Since the field dependence is about 1%, 

will have approximately the value ~lO. Lastly, it is a property 

of the collision superoperator~that its superoperator adjoint ~ 
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is the same as the time reversed collision superoperator~ ~T" Hence 

it follows that ~9% int involves a matrix element between B int and 

its time resersed polarization _int ~T . The consequence o f  this is 

mentioned later. 

It was stated earlier that phase randomization requires that 

only that part of (and of B int) that is diagonal in J magnitude, 

is of appreciable size. It is convenient to take this explicitly 

into account in any assumed form for B int. Consistent with this, 

let me first consider the consequences of assuming 

= 2 (61) 

as has standardlybeen done in most of the work up to now. At the same 

time, ~ can be replaced by ~Z in Eq. (58). If~d, acting on Bint, 

is approximated by a collision rate ~ int (~int is not the same 

as ~ ), then one has the contribution 

(62) 

to the viscosity. The field strength H and the pressure p enter only 

in the combination H/p. In the absence of a field, the total viscosity 

tensor becomes scalar (~ =~E (2)) with scalar viscosity coefficient 

: ~  + nkT Vint@ 2 = nkT (~ + ~ in t@ 2) . (63) 

The field dependence of the viscosity is governed by the 

properties of the Zeeman superoperator ~Z. Let us now look at its 

structure.~z is effectively the commutator~z of Jz' namely 

and it is convenient to recognize that the superoperator ~z is the 

rotation generator, about the 9-axis (field direction), for angular 

momentum operators. In a magnetic field, the symmetry group of the 

system is C a (actually C h ) and the viscosity should be classified 

under this group rather than under the full rotation group S0(3). The 

5-dimensional irreducible representation of S0(3) to which [~}2),-- 

[~](2) and the shear viscosity belong are completely reduced to five 

1-dimensional irreducible representations of C . This is of course 
( 2 ) ~  exactly equivalent t o  the five spherical harmonics Y , but in 

Cartesian form [13]. The effect of~. on an irreducible component 

E~] (2)~ of [£ ] (2 )  is  
v~ 
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while there exists a basis e (2)# of second rank symmetric traceless ,4 
tensors s a t i s f y i n g  

[ j l ( 2 ) #  = Ej ] (2 )  : e(2)~4 . (66) 

Explicitly these are 

e (2 )~2  : - _ L ( £  ÷ i ~ )  (£  + i # )  , (67a) 

and 

(67b) 

3 '/~ _ I e (2)0 = - (g) (~ ~ y #) (670) 

which are in natural phase according to Condon and Shortley [17] and 

obey the relations 

(~(2)#) = (_1) ~ ~(2)-M , (68a) 

e (2)~ : e (2)~ = ( - 1 ) ~  , (6Sb) 

and 

~. ~(2)~ ( -1)  @ ~e(2)-~= E (2) ° (680) 

If B int is now expanded in the e k2)~ "~ basis, then the internal state 

viscosity contribution of Eq. (62) can be written as 

(2 ) -~A- - i n t  (_1)24 e(2) ~4 A~int = ~e -"i~ (69) 
with 

~t = nk~¢int# 2 (l ~%nt) -1 (70~ 

The phase randomization factor and H/p dependence is clear from this 

equation while the directional dependence of the viscosity can be 

sorted out in conjunction with Eqs. (67). The total viscosity tensor 

can be written in the same way as Eq. (69) and it is now customary 

to separate the ~ into real __~ and imaginary ~ parts. ~his has 
already been discussed by Professor Beenakker. Note that for zero 
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field, ~int is an additive (real) contribution to ~ but that phase 

randomization decreases the internal state contribution. Since 

experimentally it is the field dependence that is measured, ~ of 

Eq. (63) is the reference viscosity at zero field and deviations 

from that, 

~field 
- ~-%= n~T ~int~ 2 i~ ~ ~int(1 - i~, ~int )-I (71) 

a 

are, for the real parts, negative. This is the decrease in viscosity 

with increasing field that is usually observed. Of course the ~ = 0 

component of ~ does not phase randomiz@. 

It was tacitly assumed that B int, Eq. (61), is velocity inde- 

pendent, so that tensorially, B int must depend on the directions of 

J as indicated. The deductions based on the tensorial behaviour of 

are then valid, for instance, that ~ does not phase randomize. 

A possible choice of velocity dependence of B int is of the form 

[~](2) ~. Such a B int is odd to time reversal so that such a contri- 

bution would increase the real parts of ~ field. So far, the experi- 

mental evidence indicates that B int i_~svelocity independent for N 2. 

Finally, even if B int is velocity independent and diagonal in j 

magnitude, there is no requirement that all j states contribute 

proportionately to [~(2) as given in Eq. (61). In fact, recent evi- 

dence is to the contrary. The generalization to allow an arbitrary 

dependence on j is to set 

~nd~d -I ~[~] (2) : Z~j~.  (2) (~) Pj(pj)'II~ Z@j AO2Oj (72) 
J J - 

Here P° is a projection operator onto j magnitude quantum states, 

~2) IJ) is explicitly 

u l  , (?3) 
el 

so that A020j -=~(2) (j) pj (pj)-~is normalized, 

- ' /  , )_,/~)= ~j E(2) 

with Boltzmann factor 

pj = (2j @- I) Q-I exp [-Bj (j + l)/kT] . (75) 

The general notation A020 i will be used again in Part V. Lastly, ~i 

is a coupling strength. This allows for the possibility that ~int 
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is j dependent, giving a ~j and 

. int 2 . _~ : ~T ~j @j (1 - i~ ~j)-l (76) 
J 

This is called an uncoupled model ~8~ It seems that this is still not 

general enough and that it is necessary to allow collisional coupling 

between the different j-shells. That is, one needs to allow for a 

relaxation matrix 

(<A020j Igdg020j ,>) g n (V ) re l l~ (O~) j j ,  E (2) . (77) 

In particular the zero field internal state contribution to the 

viscosity, which is identical to the saturation of the field dependence 

of the viscosity is 

int~ -i j~j 11 
A~ IH=O = kT ~V}rel" ~j[~(0~)- @ (78) • . ,  j j ,  _ j ,  . 

The distorted wave Born approximation (Part V) indicates that for .*I~. ~ 
large j, ~j = (p j) y, ~ independent of j, so that the same weighting 

^ l  
. (79) 

of the matrix inverse of ~(0~) appears in depolarized Rayleigh 

scattering as in the viscosity. Professor Beenakker has already 

indicated some of the initial successes in following this comparison 

of experimental data. 

3.3. The Treatment of Oxygen 

Oxygen is a paramagnetic molecule and was the gas used in the 

first experiments on the field dependence of gas transport properties. 

Nevertheless, it does fit into as simple a scheme as does N2, as was, 

in particular, discovered by Kikoin et al. [19] , and more accurately 

by Hulsman et al. [20] . This is easily traced to the relatively 

complex internal state energy level structure, being finally 

theoretically understood [4] in 1971, and in so doing, led to the 

qualitative picture. 

02 has an electronic spin S of 1 which is, because of the 

enormous difference in gyromagnetic ratios, much more affected by a 

magnetic field than is the rotational angular momentum, here denoted 
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by ~. The resultant $ = ~+# is obviously denoted by £. The internal 

state hamiltonian of oxygen is given by 

~int = B ~2. Cs r 9 . ~ ~ cA [~](2) :[~](2) (80) 

with spin rotation and dipolar coupling constants Csr and c& . u 

is the unit vector parallel to the internuclear axis while ~S and 

~N are the electronic and nuclear gyromagnetic ratios. Only the 

rotational energy level splittings associated with B N 2 can become 
f(o) comparable with kT, so in only this term needs to be retained, 

just as in N 2 . Moreover, the rotational energy level splitting due 

to B~ 2 is much larger than ~-i so phase randomization implies that 

is diagonal in the magnitude of N, we say that N is a "good quan- 

tum number". This also implies that we need only consider that part 

of ~int which is diagonal in N. This only affects [~2) which must 

now be proportional to [~](2), in fact 

[[}2)Idiagonal in.=- ~1(2)[2 (f- ~-l (81) 

and ~int can effectively be replaced by 

~int : ~ # +  Csr ~ ~+ed (~) hl (~) ~1 (~) 

%~ .s ~.." (82) 

with 

The treatment so far requires that B ~2~ cA [S](2) :[~2) which is 

the Hund's case (b) coupling scheme that is valid for the thermally 

most populated rotational levels N~I0, of 0 2 at room temperature. 

Now the spin rotation and dipolar couplings both work to couple N 

and S to a resultant ~, since, e.g. 
N 

s . ~ ~ = - ~ [ J ( J + l ) - S ( S +  1 ) - N ( ~ +  1)] , (8~) 

while the Zeeman terms separately work to quantize S z and N z. It 

depends on which effect is stronger as to which quantization scheme 

dominates, and of course there are intermediate cases. I will 
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briefly discuss both extremes. 

3.3.1. Low Fields 

Since the field dependence of the transport coefficients is 

to be observed, we are interested predominantly in the situation 

where ~H~ is approximately I and thus all energy level splittings 

that are larger than ~H will be phase randomized. For low fields, 

this implies that J magnitude is a good quantum number and consequent 

ly ~int should also be diagonal in J. That is, the Zeeman terms 

should be truncated so they both depend only on H - J and this gives 

the effective hamiltonian 

~ ~ ( 8 5 )  

with an N and J dependent effective gyromagnetic ratio 

For 02, the magnitude of S is I~ and J - N ~ can take the values 

-i, 0 and i, moreover ~SN2000 ~N so th~ ~N term can be ignored. 

The result is that for P = £ i~ the effective gyromagnetic ratio is 

N Z ~s/N (N = i0 is the thermal average) while the ~ = 0 states 

have a ~NN of ~S/N (N+ I), roughly a factor of I0 smaller. 

An uncoupled calculation with each multiplet NJ giving its 

own contribution is 

~nt = nkT NJE ~NJ @~j (it i~Nj H ~Nj) -I . (87) 

Because of the disparity of magnitudes of ~Nj~ there are two ratios 

of H/p at which phase randomization effects set in. The first for 

~ = ~ I and the second occurring at higher H/p values (roughly a 

factor of I0) for ~ = O. An interesting effect now occurs. For the 

= 0 contributions~ the higher field and lower gyromagnetic ratio 

make it very easy for a breakdown of the low field coupling to J to 

be observed. This manifests itself first as a non-linear dependence 

of the precession frequency on field and shows up experimentally as 
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an extra pressure dependence of the 

viscosity. Fig. i shows the experi- 

mental and theoretical ~i- viscosity. 

At low pressures one has only the 

double peaked curve appropriate 

to the low field case, but at higher 

pressures (and a constant H/p ratio 

which means higher fields), it is 

found that many of the energy level 

spacings become smaller and actual- 

ly cross. Hence there is a cancel- 

lation of contributions to ~I- and 

in fact this quantity is negative 

for certain values of H and p. 

The theoretical calculation[~] 

was based on the polarizations 
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with PNJ being the projection operator onto an NJ multiplet. The 

uncoupled model formula is then 

= Z 2 
NJ NJ ~NJ 

in which~ (I) includes both linear and quadratic Zeeman terms for 

the energy level structure. Assuming that CNJ = 9is independent 

of N and J and ~NJ = J (J ¢ I) ~0' implies that there are only 

two adjustable parameters. These are an overall magnitude factor~ and 

One reference collision time ~0" The latter was picked so that the 

peak of the ~ = 0 contribution in the limit of zero pressure fitted 

experiment. The success of the fit is that all curves depend on the 

same two parameters and the relative shapes of the curves are 

dependent on the assumed N and J dependence of @NJ and ~NJ. ~hese 

assumed dependences are in fair agreement with collision theory 
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results based on the distorted wave Born approximation. 

3.3.2. Hish Fields 

At high fields, the Zeeman energies -~S ~ " ~ will dominate 

over the coupling of S and ~ to give ~. At the same time, the rota- 

tional Zeeman term - 7N ~ - ~ is comparatively small because of the 

difference in gyrOmagnetic ratios. I will discuss only the limiting 

case to indicate the type of field dependence that one expects. 

Now phase randomization of the electronic spin (Zeeman) fre- 

quencies implies that S z is a good quantum number. That is @ and 

B int are to be diagonal in S . Truncating the hamiltonian in the 
z 

same way gives 

~int = B ~2 _ ~S H m S + (Csr m S - ~N H) N z 

A 

This is obtained by replacing ~ by m S z everywhere that ~ occurs. 

If .,~H is ignored as being small compared to Csr ms, then it is noted 

that the rotational states are unaffected by the magnitude of the 

field. In this case, the spin rotation term Csr m S N z implies that 

the rotational angular momentum N will precess about the spin which is 

quantized parallel to the field. The dipolar term gives a much more 

complicated motion which is absent if the electronic spin is ~Arather 

than i. The appropriate polarizations are given by 

(~d~d -I ~f~l(2~N~ms ~N~JI~ 2) (~) PN,m S (91) 

with projection PN,ms onto N, m S states. @N is independent of m s 

on the basis that collisions affect the molecular orientation rather 

than electronic spin, For spin ll~molecules, an uncoupled model 

calculation gives 

~.int N~N2~N pN (92) = 2 ( Csr  )21 -I 

on the basis that ~N is again independent of m S . PN is given by 

Eq. (75) and distorted wave Born approximations can be made for@N 

and ~N" It is to be noted that the m S + 1 = - ~ contributions have been 
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formally added to give a result that is real. Thus there are no 

transverse viscosity effects. This is because there is just as 

much precession in one direction as the other. Moreover, the "field 

dependence" is independent of the magnitude of the field, but of 

course the direction of the field determines the axis of precession. 

The effects are then characterized as dependent on the ratio Csr/p 

which appears as a pressure dependence since Csr is a constant. 

Professor Coope ~21~ used these formulae to explain data which was 

gathered [22] in 1938 on NO 2 but had remained unexplained until his 

work in 1971. 

IV. ON THE BOLTZMANN EQUATION FOR MOLECUleS WITH INTERNAL STRUCTURE 

This year the Boltzmann equation is 102 years old ~23]. I think 

it is safe to say that no other equation and its consequences was 

greeted with such criticism and only the concept of entropy has been 

(and still is) the center of more controversy. 

As I see it~ there are three~ what we would now call statistical 

assumptions at the root of Boltzmann's original equation. These are: 

i) 0nly binary collisions are important; 

ii) Before a collision the molecules are statistically inde- 

pendent,and 

iii) A collision occurs at one point in space. 

There has been much work during the last 28 years [24~ in generalizing 

the first~ which has necessitated generalizing the second and also 

the third. This I will not do since for a dilute gas, i) should be a 

good approximation. In fact, I consider the first two to constitute 

the "philosophy of the Boltzmann equation" while the third is un- 

necessary and for certain considerations even in the dilute gas 

case, incorrect. To give Boltzmann his due respect~ iii) is a property 

of the special collision processes that he was considering. 

Except for special molecular models [25] , the first Boltzmann 

equation valid for molecules with internal structure was introduced by 

Wang Chang and Uhlenbeck [26] . Essentially, their only change from 

the monatomic case is to introduce a set of distribution functions 

fi (~' $' t), one for each internal state, and a cross-section 

matrix which describes the transitions from one internal state to 
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another. This is obviously not general enough to account for the 

phenomena that I have been discussing in my previous lectures, since 

there the density matrix must be non-diagonal. A Boltzmann equation 

of sufficient generality to allow for degenerate internal states 

was first derived by Waldmann [27] and independently~ by myself [28] 

Since the emphasis at that time was to obtain a collision operator 

in as close agreement as possible with the classic form~ the result 

was specialized too much. Rather, I now prefer to leave the form of 

the equation as general as possible [29] and to see how it reduces 

in special cases. I will "derive" the general form and discuss some 

of its properties. 

&.l. "Derivation" of the Generalized Boltzmann Equation 

An N-molecule isolated system obeys the von Neumann equation 

i ~l,(N)nt =~/(N) r(.)/,(.)~v(.) ~£(N) r(N) . (93) 

The N-molecule density operator has reduced density operators 

F(n) = [ (N-  . ) , ] - I  Tr r ( " )  
I...n n+l...N (9zl) 

with "convenient" normalizations (n = i, ..., N) 

Tr F (n) = N!/(N - n)! . (95) 

By successively tracing Eq. (93) over more and more molecules, the 

quantum version of the BBGKY hierarchy is obtained. The first two of 

these are 

i ~rl/~t = Z1 (1) fl + ~r2 V12# (2~12 (9~ 

and 

~n(2) /~  t p (2 )  p(2)+ p(3) (9?) 
i J/12 ='~Z2 112 Tr3(~13 ÷~23 ) "125 " 

~ p #(n) is the Liouville operator Here I) has been abbreviated as ll,~l.., n 

for molecules l...n, ~ij is the commutator superoperator 

~ij A --- Vii A - A Vii (98) 

for the intermolecular potential Vij , and it has been assumed that 
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~(N) consists of only one-molecule ~ I) and pair Vii interactions, 

~(~) E~(1)+ ~ v (99) 
= ~,i zj " 

i i< j 

As is well known, the BBGKY hierarchy is not a closed set of 

equations and some closure condition must be applied. For dilute 

gases whose molecules have potentials of short range, this closure 

can be based on binary collisions and statistical independence before 

collision, namely the two assumptions that I have said constitute the 

philosophy of the Boltzmann equation. 

The trace term in Eq. (96) vanishes if VI2 is zero and so 

requires the two molecules to be colliding. It is oql~ in this term 

that ~(2) is needed. Hence for molecules 1 and 2 in the process of 

a oollis.ion , the binary collision approximation means that the 

~13~2 3 term in the second BBGKY equation can be ignored~ that is, 

durin 5 a collision 

This has the formal solution 

r ~(2)  (t ~ D(2) (to) (IOZ) P112(2) (t) = exp [-i~.12 - t O 112 

If now, t O is a time before the collisions occurred, then the two 

molecules are statistically independent, namely 

~(2) (to) = f l  (to) /~2 (to) (102) 12 ° 

The time t O must be understood as some time between collisions. 

Molecules i and 2 have come from collisions with other unspecified 

molecules and move in free motion towards each other till they begin 

to collide, t O is any time during that free motion and it is a 

necessary requirement for such arguments to be correct, that the free 

flight time be large compared to the time of duration of a collision. 

This i_~s true if the density is low and the intermolecular potential 

of short range. 

Free molecular motion for the pair is governed by the Lieuville 

superoperater 
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and one can write 

~l(tO ) f2 (tO) = exp [-i~(tO- t~ ~l (t) ¢2 (t) (10%) 

which connects ~i r2 evaluated at a time t O before the collision to 

the product density operator ~I r2 that these molecules would have 

had, if no collision had occurred. The combination of Eqs. (I01), 

(102) and (10%) give 

~(2) t) 12 ( = e~rp [ - i £ ~ ) ( t - t o ~  e~mp~i~(to-t ~ ~ l ( t )P2 (t) 

lim to.- g  <t) P2 (t) . ( o5) 

This is a relation between the density operator ~ (27 of a pair of 12 
colliding molecules and the product density operator ~I ~2 that they 

would have had if there was no collision. Another way of viewing 

the two exponentials is that, starting from ¢I (t) f2 (t), one goes 

back on free particle trajectories to a time t O before the collision, 

and then forward in time (to t) along a collision trajectory to get 

to ~(2). In this way, free particle motion is changed into collision- 

al motion, a result which will be made precise in the following. Since 

free and collisienal trajectories are identical at to, the precise 

value of t O is unimportant and so can be taken to - co to define 

the M~ller superoperator~ . Actually, real intermolecular potentials 

are infinite in range so that this limit is required in order to have 

a mathematical meaning - following Jaueh, Misra and Gibson [50] , the 

limit should be taken in the trace norm - but in practise to--) - 

is to be on a microscopic time scale related to the duration of a 

collision while t O is still small on a macroscopic time scale related 

to the free flight time. Again, one needs low densities and short 

ranged potentials. 

The generalized Boltzmann equation [29] is obtained by inserting 

Eq. (105) into the first BBGKY equation, namely 

where the transition superoperator 

contains all the effects of the collisions. In my view, this equation 

is the most general mathematical formulation of the first two statis- 

tical assumptions i) and ii) and moreover, has used onlx these two 
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assumptions. There are various alternate forms for this equation and 

many special cases. I will discuss some important ones. 

4.2. Transition Operator Representation 

The scattering of a (Dirac) state vector }) is governed by 

the M ller wave operator 

/%~st-lim e~ (i~ (2) %) exp (-i~ t o ) , (lOS) 

tO~ -~ 

defined as a strong operator limit of the product of the colliding 

and free motion evolution operators. This satisfies the intertwining 

relation 

~ ( 2 ) / l  =/~ ~ (lO9) 
which means that it is capable of making eigenfunctions of ~ (2) out 

of eigenfunetions of K~ having the same energy. Thus~ if ~E> is an 

eigenfunction of K (these do not exist in the Hilbert space of state 

vectors but, following Dirac~ I will use them for ease of presentation 

and thus avoid problems of spectral measures~ etc.), then 

I ~ >  ~ ~ J l l ~ >  = A ( ~ )  I ~ >  (11o) 

can be given in terms of the energy dependent M~ller wave operator 

defined by the Lippmann-Schwinger equation [51] 

/ l ( ~ )  : 1 + G (~) v / l ( ~ )  , ( l l l )  
and the Green's"function" 

G ( E )  = s t - l i m  ( E - K *  i £  ) - l  . ( 1 1 2 )  
c ~ 0 + 

If~ exists for the given intermolecular potential, and the transition 

operator is defined by 

t ~ v/k , (ZlS) 

then [50] (operator adjoint) 

~A =nan* (ll~) 

and 

~A :%IAA = t *n ~ -~A t' (I15) 

From the Lippmann-Schwinger equation, it is seen that~ involves % 



501 

both linearly and quadratically. Rather than exploring this form in 

more detail at this stage, it is convenient to first make a Weyl 

correspondence [52] transformation of the Boltzmann equation so that 

the position and momentum dependence of the collision operator is 

more explicit. 

The Wigner distribution function [12] is defined by means of the 

unitary transformation on the translational part of the density 

operator according to 

with the density operator here expressed in momentum representation 

of the translational states while both f and gP|~kP~} are operators 
~Cl) in internal states. The free motion as given by ~I gives rise 

both to a drift term from the translational states and an internal 

state Liouville operator which will be simply denoted by ~, with no 

subscript. This corresponds to the notation in Eq. (31). Since the 

collision term involves three different positions, there are a mul- 

titude of ways of writing down the result. A convenient method was 

introduced by Baerwinkel and Grossmann [53] and consists essentially 

of expressing all momenta in terms of sums and differences. Written 

out, this is [35] 

~f~ f i~f J t) (ll?) 

where 

I q'y) "](Oq 

( l lS) 
and ~ ( ~  ~ )  is a superoperator acting on internal  state operators 
according to 

This can be identified as a momentum representation of~. One 

immediately sees that this collision operator is non-local, the 

colliding molecules are not at the same position nor at the position 

of the f appearing in the drift term. 

Since ~ and ~ arise from the non-locality of the collisions, 

one expects that their appearance in fl and f2 can be ignored if f 

is sufficiently homogeneous. This gives rise to S-functions in 
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and ~ so that 

J (~' ~)@ Jo (~' 2 ) ~ -6%~3i~2 T r2 I~ (~ °~° )  f l  (£ '~+~-~)  

f2 (~s ~*~4 ~) d k d~ (120) 

is a local collision operator. If s moreover s f is sufficiently phase 

randomized that one can treat f as being diagonal in (internal stabe) 

energy in the collision operator s then this collision term is the one 

first derived by Waldmann [27] and myself [28] s but of course in a 

different notation. To specialize further~ if one assumes that f is 

diagonal in internal states s 

f (~s ~s t) = ~ | a ~  fa (Z s ~s t)~a~ , (121) 
a 

and uses the relation 

(x - i E )-1 _ ( x ,  i~)-l---~ 21Ti ~ (x) s (122) 

the cross-section 

~'cd4ab = ( 2 ~ ) ~  2 ~ab~cd (Pab/Pcd) ~(ab Pab I t l ca 2cd~ 2 , 

and the op t ica l  theorem 

(ab Pab ltf- tl ab Pab' = 2, i c~d[dPcd 

(123) 

i 2 2 C~'ab+~Pab/~ab -%d-lPcd / ~od~l~ *b ~abl t led 2 c~ 2 ' (12~) 

then the Boltzmann equation becomes 

m "Vfa = ' ', c (~,  p s t )  fd ( r s £ 2  t )  (125) 

-fa(£S £, t) % (:s £2s t)] Pod ~cd~ab ~(ener~) 
Pab ~ab ~cd 

where ~(energy) is the same as in Eq. (124) and Pab is the relative 

momentum associated with ~ and ~2" This is exactly the Wang Chang 

Uhlenbeok equation ~26] . If there is no position dependence, then this 

is of Master equation form with uncorrelated pair probabilities while 

if there is only one internal state s one has the usual monatomic gas 

Boltzmann equation ~23] but with quantum mechanical cross section. 
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Now angular momentum is a conserved quantity. If the internal 

states lose angular momentum during a collision, then the translation- 

al states must gain the same amount of angular momentum, about the 

center of mass. If the collision is local, all molecules are at the 

same position and no torque can be exerted to create translational 

angular momentum. On the other hand, localizing the collision operator 

does not affect the internal state operators, so a collision can 

change the internal state angular momentum. In this way, the localized 

collision operator violates angular momentum conservation. It is 

interesting to note [34] that if f is not diagonal in energy, then 

the localized collision operator also violates energy conservation. 

This can be remedied [34 by adding a potential energy density calcu- 

lated according to 

nm E V (~, t) ~ Trl, 2 ~(~ - ~i ) VA ~i ~2 ~, (126) 

to the usual kinetic (translational and internal) energy density. 

Essentially a non-local collision allows the molecules to separate 

and acquire potential energy. By retaining part of the non-locality 

of the collision operator, a scheme has been given [34] which is 

consistent with all conservation laws but I do not have time to 

discuss that here. 

%.3. Dependence on Free Motion Fre uencies 

Let ~ be an eigenoperator of the free (pair) particle Liou- 

ville superoperator~, 

with frequency ¢O . Acting on such an operator, the transition super- 

operator g is equivalent to [29] 
-I 

9/+ %/ J (128) 

compare the Lippmann-Schwinger Eq. (IIi). This quantity is identical 

to the m (~) operator defined by Fano [35] in his theory of pressure 

broadening. 

A matrix element of~is then 
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It is ~, not ~' that appears in~(~) A diagonal matrix element 

is complex and is written 

= = (13o) 

If the collision partner is ignored and one considers only the com- 

ponent ~ of the density operator for the molecule of interest that 

has a free motion frequencyw ~ = w ~ ,  then th%s part of the 

Boltzmann equation becomes 

This demonstrates that ~ is a frequency shift and ~ a relaxation 

time for ~ . It is easily shown that I/~0. In this way, ~ describes 

eollisional frequency shifts and relaxation rates~ Eq. (150), as well 

as frequency couplings, Eq. (129). It must be noted that the frequen- 

cies discussed here refer to the eigenvalues of ~ and have nothing 

to do with the true time evolution of ~ , in particular~ ~ is not 

the time Fourier transform of F(t). 

It has been argued - in the first lecture of this series - 

that long free flight times lead to phase randomization and diagonali- 

zation(in energy) of the density operator. Complete phase randomiza- 

tion thus means that only zero frequency terms remain. At an inter- 

mediate stage of phase randomization one can expect that all the im- 

portant energy off-diagonalities have frequencies small compared to 

kT/~ . Since thermal energies are averaged over, I expect that at 

this stage, the frequency dependence of ~(~) is negligible and one 

can approximate the collision operator with ~(0). This means that 

not only is p "almost" diagonal in internal energy but also that the 

translational energy off-diagonality is small, which is reflected in 

the slow position dependence of f (~, 2' t). This is again the realm 

of the Waldmann-Snider collision operator. These arguments have never 

been fully investigated and much work needs to be done on understanding 

all the properties of ~. 

The concept of entropy increase, the H-theorem, is central to 

the history of the Boltzmann equation. Here this is generally not 

provable. For a general singlet density operator, many frequency 

components are present so that any expression for the entropy pro- 

duction involves matrix elements of ~ reflecting the collisional 

coupling of different free motion frequencies. The signs of these 

terms are unknown, nor have the bounds on the off-diagonal frequency 

components of "~ been investigated. Since the H-theorem requires the 

negative definiteness of the anti-hermitian part of~ , it follows 
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that the entropy need not monotonically increase. The rationale ~29], 

is that as time progresses, phase randomization destroys the higher 

frequency components of ~ until ~ is sufficiently diagonal in energy, 

so that only ~(0) is important and entropy increases. For short 

times, all kinds of oscillatory motion are possible, which reflects 

the complicated interplay of free molecule (reversible) motion and 

decay. Detailed calculations to verify these ideas have so far not 

been carried out. 

V. COLLISION INTEGRALS OF THE LiNEARIZED W-S EQUATION 

In the regime of validity of the W-S equation, the Wigner 

distribution function-density operator f(~, ~, t), Eq. (116), is 

sufficiently diagonal in energy that as far as the collision processes 

are concerned, f i_~s diagonal in internal energy, and moreover f 

commutes with the effective Bo~tzmann factor exp (-~nt/kT). For 

example, in studying the field dependence of the transport coeffi- 

cients of diamagnetic diatomic molecules, the Zeeman terms are 

dropped from ~ t in the Boltzmann factors and from the evolution In 
operators ~(2) and ~. Thus m states are degenerate as far as the 

collisions and the inner product is concerned. 

If the gas is close to (local) equilibrium, then one can write 

f = f(0) (I+@) , (132) 

compare Eq. (35), and the W-S collision operator becomes,Eq. (119), 

Jo (~' ~) ~- 64~3 iF Tr2~U(~° ~ o) 

_ f(o) (~, 2) 6~ @. (133) 

The linearized W-S collision operator is usually written in terms of 

the transition operator t as 
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( ~ O ) l  (2 If') 4 ~2 Tr 2 

(+l (134) 

Here ~g and ~' are the relative velocities after and before collision 

and t~, is an operator in internal states, being a partial matrix 

element of t defined as 

<altO, Ib> ~ <a,~It I b,#~'~ (135) 

for internal states a and b (for the pair of molecules) and momentum 

kets normalized according to ##g l~g'~ = ~(#~- ~')-~ is short 

for ¢I (~i)' the linear perturbation function for molecule i evaluated 

at reduced velocity, Eq. (28), ~ appropriate to molecule I before 

collision. It is understood that the velocities are related by 

(2) , w,: (2; (13 ) 
~l ~ ~2 

where ~ is the reduced center-of-mass velocity and Z = (m/4kTZ~1~g 

is the reduced relative velocity. Lastly the magnitude of ~ is 

restricted by energy conservation as denoted by ~ (E) which is short- 

hand for 

i 2 2) , 
~(~)~ ~(~a* ~#g - ~b -~g 

if the pair molecular internal states a and b appear as in Eq. (135). 

The dagger, T , here acts only on internal states. 

This equation is of much more complex form than the Wang Chang 

Uhlenbeek equation, Eq. (125), since both @ and~@ are generally 

non-diagonal in internal state labels. It is seen that this is not 

written in terms of cross sections and in fact t appears linearly 

as well as quadratically. If @ and ~ are diagonal then the optical 

theorem, Eq. (124), reduces Eq. (134) to the linearized version of 

the WCU, Eq. (125) 

Matrix elements of~ are conveniently expressed as kinetic 

theory cross sections 
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6 " ( A I S )  = (g - I~ , .b ) )  n -1  ( ~ / 4 / 8 k T )  '/~" , ( 137 )  

it being understood that A and B are normalized according to the 

inner product of Eq. (43). It is necessary to pick a basis in which 

to expand @ and for which all the collision integrals can be expressed. 

Now ¢ is a function of velocity and an operator in internal states, 

moreover ~ is rotationally invariant. These considerations suggest 

that a convenient basis is one in which velocity polarizations and 

internal state polarizations are separately irreducible representa- 

tions of the 3-dimensional rotation group. This also is motivated by 

the experimental fact that velocity angular momentum directional 

coupling appears to be weak. It is thus convenient [71 to use the 

normalized velocity polarizations [7] ~ps (W) , 

tp (w)Izp 's' (w)>) = 4p' Sss, (138) 
9 

which are proportional to a product of irreducible tensors [W] (p) 
p+~ 2 and associated Laguerre polynomials ~ (W) together with ortho- ~i~q) (j) --'/~. 

normal internal state polarizations PJ (~v)(pj v) ~ where 

PJ (~v) =_ ~ lJ~) <jmvl (139) 
m 

an~ ~q) (£) is proportional to [J(q), all being normalized such 
that 

- -  f j, fvv • CliO) 
The ~, v indices label degenerate internal states other than the 

angular momentum while the m dependence of a polarization has been 

recoupled to a spherical harmonic -- "-~<q)v(J) dependence on angular 

momentum according to 

~(q)~'(J) PJ (~V)= (i)q[(2j+l) (2q+l)]'~mm,(_l),J-mc_J q ~i')l jm~)(jm'vl 

(...) being a 3-j symbol ~ The product basis 

Apq sj Vv ~ ~ps (~) ~(q) (~) pj (~v) (Pjv)-'@ 

is thus tensor valued in both velocity and internal states and 

reduces for diamagnetic diatomic molecules (e.g, N 2) to A pq sj ' 

(141) 

(1~2) 
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there being no v states. 

A kinetic cross section, Eq. (137), arising from the use of 

s~ch polarizations is a tensor that is symmetric traceless in four 

sets of indices, labelled pqp' and q'. Since ~ is rotationally 

invariant, such a quantity must be expressible in terms of one or 

more scalars. The choice of coupling scheme for expressing the 

results is motivated by the smallness of the directional coupling 

of velocity and angular momentum. In terms of 3-j symbols, this is 

expressed as 

) = T. (-1)z÷P+q*~+~&(~q,q)" ~'(apq sO ~v~lap'q's'j'~'v ' 
kN 

~(kpp') ~ q ~; ~ . ~  ~, ~" (pq~j~Ip'q's j '~'v')  k (1#3) 

with scalar cross sections ('''~''')k and normalization constant [15] 

(L+ 1)! (L- 2~l)! (t-2~2)~ (t-  2 ~ ) !  ¢] 
= [ 3 . ¢ - 1  . 

2 (2~1)~ (2~2)! (2~ 5)! 

It is seen that k is a measure of the directional coupling between 

velocities and angular momenta. For k = 0, this coupling vanishes 

and I will refer to such cross sections as relaxation terms while 

k / 0 terms necessarily arise in the field dependence of transport 

coefficients, compare Eq. (57), to produce polarizations that are 

phase randomized by the field. Hence these will be called production 

cross sections. 

The polarizations ApqsjVv are very useful for uncoupled model 

calculations and for cataloguing the results of collision calculations 

On the other hand, the laws of conservation of mass, momentum and 

energy involve combinations of these quantities. The flux terms that 

naturally arise in hydrodynamics are also combinations of the A's. 

The six quantities of hydrodynamic interest are: 

mass BOOOO ~ I = ~ f .!I~ 
jv 'P0v ) Aooojvv (IgS) 

momentum (2mkT~l~Bl000 ~ m~ = (2mkT) .~ (p~v) AIO00vv (I~6) 
0v 

reduced non-equilibrium energy 



reduced shear momentum flux 

translational heat conductivity 

and internal heat conductivity 

Here the B 
pqst 

notation is one that was used in the earlier litera- 

ture.[31 . Cross sections in mixed representation will be denoted 

with the same tensorial reduction as given above in Ey. (143). 
Collisions are unaffected by the center of mass notion. Hence 

it is possible to explicitly carry out the integral over 5 leaving 
" 

integrals over the relative momenta of the pair. Two types of rela- 

tive coordinate integrals arise, c' in which both internal state 
polarizations in G are carried by the s;lme molecule, and @ " for 

different molecules. The result of the integration is expressed 
V 

as 

= (2k++l)fi(kpp1)-"\grit I(~) jn$nl; psp's fn(k 1 ~j/. 
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and i~olves a complicated expansion coefficient (k) , , Iin ~n , ,. This ;psp s 
involves [37] a 9-j symbol and will not be reproduced here. An exam- 

ination of these results shows that there are various exact relations 

between cross sections, exemplified by 

. I i ~  , 

~( 120 jTvlPOlO) 2 = - (5) ~(020 j~vll2000) 2 (153) 

and others have been mentioned by Professor Beenakker [1]. A study 

of I (k) limits what polarizations can be produced from the hydro- 

dynamic fluxes and these are summarized in Table II. 

Further progress can be made within a Distorted Wave Born Approx- 

imation (DWBA). The intermolecular potential is considered as a sum 

of spherical V 0 and non-spherical V I parts with the collisional effect 

of the first dominating the second. If there was only the spherical 

potential, only relaxation (k = O) cross sections occur and these are 

explicitly given by 

(pqsjv- Ip q s' j'  'ko q [p p 

E (o) 
~nn" I~ n~n~ ;paps' 

[~jj' [vv '+ ~qo (-I)' (p~vPj, v,)½~v (I) Onoool~n'ooolo)o. (154) 

The velocity cross section ~v (I) is in turn expressible according to 

~v (1) (2noool~n'ooolo) 0 = h (~)½EB (n~, n ~ ,  r) I~r (T) 
r 

(155) 

in terms of Brody-Moshinsky coefficients [38] and Talmi integrals [39] 

fT I ~ (T) ~- @~[p(r+~)] -I exp(-T 2) ~2r+3 [I-P~ (cos~)] ~- (g,~) d cos'y.dT 
r 0 -± 

(156) 

of the differential cross section ~-(g,~L) at deflection angle~ and 

Legendre polynomial ~ (cos ~). An alternative form in terms o£ 

Chapman Cowling [2~ ~'s) integrals is also given in reference 7. 

If p and/or s is non-zero, it might be expected that~(0)(...~...)O 

dominates ~(...I...)0 but in practise this often appears to be 

only 50% true, see in particular the~(1200) data of N 2 appearing in 

reference 40. 

A perturbation expansion of the transition operator t = t O + tl+ 

in powers o£ V I gives for t I the expression 
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tl =/Io vl~o (157) 

where~ 0 is the M611er wave operator for the spherical potential and 

~0 is its operator transpose (time reverse of the adjoint - also 

called [41] the L conjugate). If V 1 is written as 

Vl= ]~2 L ~(ll)~(12) o~1+'2 v (~2 jl~)es~ T') (~) b i l l 2  L (R) 

(158) 

Where R : R R is the position of molecule 2 relative to molecule 1 

and "~i ~) is an ~th rank tensor operator (assumed hermitian) on 

molecule i, then the DWBA transition operator is 

= '~1 J2 L 1 
J(12)~l+~2 eL _(L) , , V (~2~1 L) 

(159) 

where the translational dependence is contained entirely in the quan- 

tity 

11~2 ^ ) [  { ~ 1 ~ 0  ( { )  b~ lJ2L 

f (s) ~, The e v a l u a t i o n  o. A ! t (~ '  ) ~ q u i r e s  a knowledge of  the complete 
s c a t t e r i n g  wavefunct~e~s f o r  V 0 wh i l e  the i n t e r n a l  s t a t e  dependence 
of t I is entirely separated from the translational motion. It is now 

useful to express the ~(|) in terms of reduced ~group theoretical 

reduction, see e.g. Edmonds [36])matrix elements 

.... j, <Omv, J(~)* I j m v>~ (-I) j-m _(m j m,)(jvll II v > . (161) 

With these definitions, it is possible to say a little bit about the 

kind of results that one can obtain while the detailed treatment and 

a complete definition of the quantities used are given in reference 7. 

Relaxation (k = O) collision integrals are exemplified by the 

special case p = s = p" = s a = O, these collision integrals (for q = 

q" = 2) being important in viscosity, depolarized Rayleigh, Raman 

and flow birefringence studies. From Eq. (152) there are contrib- 
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utions from both~'and ~collision integrals. If many different 

j levels are occupied, it turns out that the dependence on Beltzmann 

factors p~, Eq. (75), implies that the ~contributions are small. 

An explicit formula for the ~ contribution, within the DWBA~ is 

I 
~(oqo~ 

.J'V'V')m[ PJ2v2 P''J2 v2' / 
= II~2L~2v2J~ v~ [(2J2+I ) (2j~ +I~ 

~(~2 ) , , 2 
1<~2v~ll,,t ' I1~ v~>l 

(2~1+1)(2~2+1)(2L+1)~ 

ljj, (2j+l) -½ (2J"+l) -~ (-I) 

(<~vll~ II~,'v")<~"v'll @ ii ~v' J'~'v 

j"v" . Pjv " 

~ l + j + j  '' 

n ( '~ l )  ( ] l )  ,. , , . , . , (1) 
-t- <, IV • •1~ ( ,~ "TIV11 " " V  I1. "V 113 )(J I1~ iIJ >J~-~,)~p (OOI. l l  t2100Z'~1121~ "v" 

J2 v2 -6". -6. ) jv J2V2 0 

. (-1)'~[q j, j}<.j~,, J(h)l~ j '~ '>< j 'v ' l td (~ l ) l l  i v )  

~ ( 1 )  (OOI, l l l2100T.,~l iJgj,v,+ E j {  v~ - Ejv -6j2v2 ) 0 ] .  (162) 

This involves an integral over velocities of the square of A (L) 
21 ~2 ' 

namely 

~(1 )  (OOLJl,e21OOL.Ql,~21x) 0 =_ 

(163) 

If the energy inelasticity of the collisions is ignored, x = O, then 

one has a complete factorization of internal and translational state 

dependence with the~ (I) integral acting as a scale factor for all 
P 

these relaxation cross sections. So far, only the j diagonal contri- 
h 

butions to the relaxation matrix, Eq. (162), have been explored and 

these do not agree with the DPR experimental data [42]. The implic- 
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ations of using the full matrix has still to be explored. For 

diamagnetic diatomics (no v states) the j dependence of the diagonal 

~'s is given by 

, ~ (J h J) 
~'~(°q°Jl°q°J)o = ~I o o o [I-(-I) ~l+q (2j+l){] ~ ]11IX 

X function (~l,~) 
(2j+I)Z2X function (T) 

(164) 

where the last form is valid for large values of j. 

basis of the dependence that was assumed in fitting the 02 

data, Eq. (89). 

A typical production integral is 

{(o2o j~vll 2000) 2 . . . . . .  
Jl Vl J2 v~ J2v2 

• [ ( 2 j {  +1) (2J2+1) (2j~ + l ) J  
~ ,1 ,~] f 2  L ~ ,  ._ .  v_. n,, 2y 2 

~Z+J2+L'+I ( I  l )  j ~ l  ) 
(~)~ C-l) <J~ l ld  Jl j{ vg# { v{ H , iv> 

This is the 

viscosity 

~,~ (1) s 

v (OOT'h~212OT/11~21Ej~_ v l' + Cj~ v 2' -~jv - 92v2")2 (165) 

where< (I) is a translational collision integral of slightly more 

complicated structure thab is~ l) , Eq. (163). However it can be 

shown that this <(1) vanishes if the energy inelasticity is set 

equal to zero. It is thus reasonable to consider the limit 

• q 

l im (km/x) ~61) (OOL~l~21 20 L ] l~21x)  2 ~ l im ~ (166) 
x.¢O 

which can be shown to be non-zero, at least in one approximation 

[7j~3] • To first order in x, the j dependence of the production in- 

tegral is then given by [7] 
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j,g ,I.~_' ~BI'2:,I ~1 ~ (6jv-6j'v • ~" (o2o j'~vll 2000) 2 ) 

~(~1 ) <J~ll~ IIJ'v'>< ~ vii "d ( l l )  """ I I . jv) X function ( t l  , '  11, T) • (167) 

For diamagnetic diatomic molecules in the large j approximation, 

this is proportional to 

~(020 Jll 2000) 2 ~ (Pj) X function (T) (168) 

which is the j dependence that is now being used in correlating 

theory and experiment. 

If it is further assumed that A (L) (~, g') is, tensorially, 
21~2 

only a function of the momentum transfer 

K ~  ~ (g '  - ~) , 

I 
then it can be shown that for L = L, 

~ (T,+l) ]~ 
lime= ~ 5 (2L+5)(2L-1)J~pp (1) (00LIII210OLJll'I'210)0 

(169) 

(17o) 

which allows one to obtain the approximate relation 

G,..f0200~ _ ~ (p~)~[j(j+l) (2j+5) (2j- l)] ~ 
"2000~2= J <j (j+l) (2j+3) (2j-l)~ ~ 

~1~2 +L ~ ~-1) 
~<j (j+l) (2j+3) (2>1)> ~ 

[~ (L+I) (2L+1) (291+1) (2~1+3) (2J1-1)] ~ 
(2L+5) (2L-1) Jl (21÷1) 

@"(020ill 200012 

T, ~II- ,OOlO) (171) 

where B is the rotational constant and it is assumed that only one 

anisotropic potential, specified by ~li2 L is present. This approx- 
imate relation between an effective viscosity production integral 

and a rotational energy relaxation rate constant has had some measure 

of success in comparison with experiment [44]. 
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